
08/10/2009
1

CEISAR White Paper on Foundation

1 Objectives of CEISAR White Paper on Foundation ... 4

1.1 What is CEISAR? ... 4

1.2 Why is Foundation so important? ... 4

1.3 Many questions .. 5

1.4 Contents of this White Paper .. 5

2 Synergy is Sharing Resources and Reusing Models ... 7

2.1 Why is Centralization so difficult? ... 7

2.2 Synergy is Reusing Models and Sharing Resources? .. 8

2.3 Reusing first or Sharing first? ... 10

3 What is Operation Foundation? ... 13

3.1 Exchange and Building Foundation .. 14

3.2 Which elements are in Operation Foundation? ... 18

3.3 Which elements belong to Exchange or Building Foundations?.. 24

4 What is Transformation Foundation? ... 27

4.1 Reusable Roles for Transformation .. 27

4.2 Reusable IT Configuration for Transformation .. 28

4.3 Transformation Approach ... 28

4.4 Transformation Engineering Tools .. 30

4.5 Transformation Tools for Management ... 32

4.6 Information Model for Transformation ... 33

5 Summary of what really works today ... 34

6 How to measure Foundation Value.. 36

6.1 Value examples .. 36

6.2 Main Value = Increased Agility and Reduced Costs ... 40

6.3 How to convince top management ... 40

6.4 Define a Global Plan .. 45

6.5 First step in obtaining Foundation budget is optimization of current expenses 46

6.6 How to define investments on Foundation? .. 47

7 What is a good Foundation? .. 49

7.1 Characteristics of a good Reusable Black Function .. 49

7.2 A structure and not a flat list of White Components .. 50

7.3 Scalability and performance ... 51

7.4 Solution Reused for several Enterprises ... 52

7.5 Foundation Reused for several Enterprises .. 53

7.6 Add Specific Functions to Foundation .. 53

7.7 Enterprise Model and detailed Model ... 53

8 How to get a Good Foundation: Success Factors .. 54

8.1 Foundation effort is not the same for Exchange and Building Foundation 54

8.2 The difficulty of creating Building Foundation ... 56

8.3 Which Transformation Tools to help Reuse? .. 57

8.4 Quality and experience of Foundation architects .. 59

8.5 Foundation Customer is required ... 60

8.6 What Organization is most efficient for Foundation? ... 60

8.7 Planning for a Foundation approach ... 62

8.8 Foundation life cycle ... 64

8.9 Build or Buy Foundations? ... 65

8.10 Foundation evolutions .. 65

9 How can current Solution teams use Foundation efficiently? ... 67

9.1 Main difficulties ... 67

9.2 How to convince Solution Teams to use Foundation? .. 67

9.3 Which Governance? ... 67

9.4 Which new Solution Models must Reuse Foundation? ... 68

9.5 Organization ... 68

08/10/2009
2

9.6 Reused Foundation allows a new Approach ... 68

9.7 How Foundation supports Solution teams .. 69

9.8 Solution Versions and Foundation Versions ... 69

9.9 What risk when Solutions depend on Foundation? ... 69

10 Foundation and Packages ... 70

10.1 Trend towards Reuse ... 70

10.2 Using a Package is importing its Foundation. ... 70

10.3 Can Package Foundation become Enterprise Foundation? .. 71

10.4 How to select a Package if an Enterprise Foundation already exists? 72

10.5 Reuse by Package or Reuse by Foundation ? .. 73

11 An example of a powerful Building Foundation for an Insurance Solution 74

11.1 Why Foundation? ... 74

11.2 A Global Insurance Solution for different Companies ... 74

11.3 Build the Insurance Foundation .. 78

11.4 How each Company Reuses the Insurance Package to Build its own Model 78

11.5 What is the final Structure? .. 80

11.6 Value of Building Foundation .. 82

12 Exhibits .. 84

12.1 Exhibit “List of Questions on Foundation” ... 84

12.2 Exhibit "CEISAR Terminology" ... 85

12.3 Exhibit “Detailed CEISAR Cube” .. 87

12.4 Exhibit “Togaf Technical Reference Model” .. 88

12.5 Exhibit "Sharing" is not Reusing ... 91

12.6 Exhibit “Complement to Operation Foundation” .. 93

12.7 Exhibit "Sharing Operation Resources" .. 99

12.8 Exhibit "Complements to Transformation Foundation" .. 100

12.9 Exhibit "Sharing Transformation Resources" .. 101

12.10 Exhibit “How to make Decisions” .. 103

08/10/2009
3

This document was prepared with the help of many experts who took the time to explain their vision and
offer.
We would especially like to thank:
Air France Laurent Mondemé
Axa Bruno Gay
Crédit du Nord Bertrand Ledu, Christine Crépeau,

Christian de Flers
Total Rosanna di Leo, Claude Fauconnet

Arismore (representing
Togaf from Open Group)

Eric Boulay, François Maitre

Google Patrick Chanezon
IBM Marc Famiante
Microsoft Bernard Ourghanlian, Steve Sfartz
Oracle Didier Medal, Yves Lhérault
Orchestra Network Pierre Bonnet
Sales Force Jean-Louis Baffier
SFEIR Didier Girard
SAP Thierry Pierre
Softeam Philippe Desfray

Writing conventions
Enterprise Architecture is a complex topic. To help understand it, CEISAR uses some terms. These
terms are easily recognizable in the text: they all start with a capital letter.
Definitions of main terms are described in Exhibit “CEISAR Terminology”.
The full CEISAR glossary is available on www.ceisar.org .

08/10/2009
4

1 Objectives of CEISAR White Paper on Foundation

1.1 What is CEISAR?
The CEISAR is the Center of Excellence on Enterprise Architecture based at Ecole Centrale Paris .
Its role is to produce public white papers accessible on www.ceisar.org, to promote Enterprise
Architecture and to offer EA training for Enterprises and Universities.
The CEISAR was founded by large International Companies: Air France, Axa, BNP-Paribas, Michelin
and Total.
Every 6 months, the CEISAR produces a white paper on a topic defined by its sponsors.
For the period April-October 2009 the topic was “Foundation”.
Foundation has been defined as everything which is reusable by the different Solution Models, like:
Reusable Transformation Approach, Reusable Development Tools, IT infrastructure, Reusable role
definitions, Reusable Information Models, Reusable Solution Models, Reusable Components, Reusable
SOA Services...

Page 2

CEISAR focuses on Enterprise Architecture (Organization and IS)

for International Groups

AirFrance/KLM
(N°1 Airline Company

in the World)

Axa
(N°2 Insurance

group in the
world)

BNP-Paribas
(N°5 Bank in
the world)

Michelin
(N°2 Tire

company in the
world)

Total
(N°4 Oil

company in the
world)

CEISAR

EA White
Papers

EA
Training

•Concerns: Complexity, Agility and Synergy
•Case Studies
•Budget

Students Companies

EA
Promotion

Simple
Consistent
English
Public on
www.ceisar.org

Decided by
Sponsors.
every 6 Months

•Executives
•Business
•IT

Ecole
Centrale or
others

Teachers

CIGREF
CIO Association for

Largest French
Companies

FOUNDERS

1.2 Why is Foundation so important?
As presented in former white papers, the key concerns of Enterprises are:
• Complexity : number of Products, Processes, Partners, operating Countries, this is increasing so

much that Enterprise Actors have more and more difficulty in understanding how their Enterprise
Operates

• Agility : according to Globalization, time to market, increasing competition… deadlines to Transform
the Enterprise should be shorter and shorter, but most Enterprises complain of their incapacity to
move fast

• Synergy : to manage a decentralized Group made up of Companies supposed to define budget at
Company level, get results, compare and make decisions based on financial information. It is much
more difficult to also create synergy between countries, to share information on customers, to Build
Solutions based on the same Components…Enterprises have difficulty in organizing synergy without
creating bureaucracy and increased complexity.

For each activity of the Enterprise Solutions exist. For example, an Enterprise Operates a Human
Resource Solution, an Accounting Solution, a CRM Solution…A Solution Model is not limited to an

08/10/2009
5

Application Software, it also includes the Business Model and groups Actor Roles, Processes and
Software for efficient Operations.
Foundation is defined as Reusable Models . It ranges from a common Business Language, to Software
pieces or Enterprise Maps, to Customer Information Model or IT infrastructure Model. In the next chapter
we will define more precisely a classification of Foundation elements to help the reader identify what
could be Reused.

Foundation plays an important role in reducing complexity, increasing agility and managing synergy.
It reduces Complexity because it structures the Solutions into independent pieces: software volumes
can decrease sharply with Reuse: we will give some examples of high Reuse case studies: it is feasible
to get 90% of a new specific Solution ready made through pre-Built Components!
It increases agility not only because there is less to do, but also because powerful Foundation
automatically generates an elegant Solution structure which will be easy to modify and maintain.
Moreover Foundation elements have already been tested and deployed so that testing and deployment
are usually faster and less risky.
It helps manage Synergy because Foundation not only means Reuse of Functions, but also sharing of
Customer information, transfer of good Practices inside Groups of several Companies, and enhanced
staff mobility from one position to another one.
We will return to Value for Foundation in the 3rd chapter.
See article on SOA and Reuse from Martin Creaner, President, TM Forum at
http://www.tmforum.org/TMForumIssue37/7826/home.html#feature?ctr=27110990

1.3 Many questions
All our Sponsors want to improve their Foundation.
After the years of decentralization, autonomy, independence, of “small is beautiful”, come the years of
Synergy. Enterprises are now under pressure to realize Synergy: economies of scale, cross-selling,
reusing best practices between countries…
But it is not an easy task to organize synergy and few documents have been written which give a global
vision of this topic.
This is why Sponsors have asked the CEISAR to produce this white paper.
We classified the main questions into 4 categories:

• What is Foundation?
• How to decide Foundation?
• How to build good Foundation?
• How to efficiently use Foundation?

(See details in Exhibit “Questions on Foundations”).
The topic turned out to be so large that CEISAR could not cover all aspects in a period of 6 months.
So, we asked our sponsors to narrow the scope.
They finally chose the following questions:

• What is foundation? Definition of Foundation and classification of its content
• What is the value of Foundations for an Enterprise; how to measure it?

o Where does it really work today?
• What are the conditions for success ?
• How do current teams efficiently use foundation : which governance and change management

are required?
• What does Foundation become when choosing an external package?

With that limited list of questions, we nevertheless had the opportunity to address many of the others.

1.4 Contents of this White Paper
1.4.1 Foundation definition and classification and what works today

Mutualization is larger than Foundation: we must give a precise definition of Foundation: Operation
Foundation and Transformation Foundation.
We will also classify Foundation elements so that it is easier to compare offers from Providers and
present Foundation status in existing Companies.

08/10/2009
6

Using our Foundation classification, we will illustrate what is commonly implemented and really working
today in businesses.

1.4.2 Foundation Value and case studies
We will discuss what benefits Foundation brings, and we will try to illustrate via some examples the value
obtained by some Enterprises.
Then we will discuss who has to be convinced and how to convince top management.

1.4.3 Success Conditions for a good Foundation
Once a Foundation has been decided upon, once budget and governance are there, how do we get a
good Foundation?
Do we Buy or build a Foundation?
How to prepare a realistic planning?
Which are the main difficulties?

1.4.4 How to efficiently use Foundation?
Once the Foundation is available, it must be used. If a good Foundation is not properly used, it is worse
than having no Foundation at all.
How to ensure that the Foundation is efficiently used by its customers: the Solution Builders?

1.4.5 Coexistence of Packages and Enterprise Founda tion
Enterprises Operate 2 kinds of Solutions:

• Commodity Solutions provided by Package providers.
• Evolutive Solutions built with Enterprise Foundation

How can these 2 worlds coexist?

1.4.6 An example of Building Foundation
To illustrate what Building Foundation is, we will describe a Solution Package Built for Insurance based
on a powerful Building Foundation.

Main message will be: “Foundation is not a side topic”.
Good Foundation can reduce efforts to Build and Deploy new Solution Models by three. Foundation can
represent a huge competitive advantage for an Enterprise in terms of time to market and cost.
It can also be an efficient way of creating synergy in large groups.

But it is difficult to achieve. It requires:

• long term strategy
• top management involvement
• new organization and new governance for Transformation teams
• selecting competent Business Actors and highly skilled IT Architects for Foundation teams
• experience in Foundation Architecture
• budgets to Build or Buy/Customize Foundation
• new Transformation Approaches

You can proceed gradually or rapidly according to your strategy and your budget.
You can use Exchange Foundation only to begin with, or also use Building Foundation.
You can deploy it on a limited number of Solutions.
But do not ignore Foundation.

08/10/2009
7

2 Synergy is Sharing Resources and Reusing Models

2.1 Why is Centralization so difficult?
Enterprises must define what is centralized or decentralized .
They navigate between

• more centralization for visibility, scale economies, consistent information on customer or
management, exchange of good practices or good products, move of people betweens
Companies

• more decentralization for people motivation, proximity with the customer, fast decisions, smaller
Solutions, less bureaucracy, subsidiarity

Difficulties arise with Centralization.

Questions

• Can we define a unique Model to Build new Products at Group level, and decentralize Product
Design at Company Level?

• Can we define a unique Model to manage Human resources and decentralize Human resource
management?

• Can we operate a centralized Call center which works for different Business Units?
• What is the advantage to centralize IT Operations while Models are different?
• How to centralize Process Models which adapt to each Company organization?
• How to centralize Solution Models which adapt to each Company specificities?
• What is the role of a centralized Architecture team
• How Software Packages and Solutions built with an Enteprise Foundation can coexist?

The difficulty comes from the fact that the single question “what to centralize or decentralize in the
Enterprise” is not the good question : there are 2 questions and not 1

• centralize or decentralize Models (the Transformation): Information Model, Process Models,
Function Models, Roles

• centralize or decentralize Resources (the Operations): Human Actors, Computer Actors,
Information,

Page 3

Centralized Unit

Centralized
Resources

Decentralized
Resources

Centralized
Model

Decentralized
Model

Centralization or Decentralization?

Independent Units which
Operate on same Model

Several independent
Units

Merging units

A B

C D

08/10/2009
8

Example:
A Procurement, Call center, IT Operations
B HR, Branches
C Merge Units which Operate on different Models: happens when 2 companies merge; unstable,
requires convergence on Models
D Independent Business Units: the Group follows financial information

You can for example:
For Human Resources

• Transformation: centralize Human Resources Model and define Processes, Functions such
“How to hire new employees”…, “How to evaluate performance”,

• Operations: decentralize Execution of the Model.: team who manage Human resources are
decentralized

For Marketing

• Transformation:
o centralize “How to design a new Product” at Group level
o decentralize “Build a new Product” at Company level

• Operations: decentralize sales of the Product at Branch level

For IT Operations

• Transformation: centralize definition of the IT Configuration Model : OS, Hardware, middleware
• Operations: centralize teams who manage IT Operations

Splitting Reusing Models and Sharing Resources will offer more adapted scenarios than just centralizing
everything or decentralizing everything.

2.2 Synergy is Reusing Models and Sharing Resources ?
We needed to classify different forms of Synergy to be able to exchange between Sponsors or with
Providers.
The CEISAR Cube helped us to define 2 categories of Synergy: Reuse Model and Share Resources .
Let’s quickly recap on how the CEISAR represents an Enterprise:

Page 5

Complexity

Agility

Synergy

The CEISAR Enterprise Cube

Real World
Execution

Model

Specific Elements

OperationsTransformations

Sharable or Reused Elements

Agility

Complexity

Synergy

A

B

C

D

E

F

G

Operations

Operation
Model

Transformation

Transformation
Model

Shared
Operations

Shared
Transformation

R
eu

sa
bl

e
O

pe
ra

tio
n

M
od

el

08/10/2009
9

In keeping with the key concerns (Complexity, Agility and Synergy) of large Enterprises, the CEISAR
presents the Enterprise as a Cube:

• to reduce Complexity , we must formalize how the Enterprise works: we split “real World
Execution ” from its “Model ” which represents this formalization: Roles, Processes, Software,
Information Model

• to increase Agility , we must split Operations which is running the Enterprise every day, from
Transformation which means Building or Modifying the Model on which Operations are
executed. Operations is producing, selling, supporting Customers while Transformation means
“Projects” to prepare new Models: new Processes, new Products, new partnerships

• to develop Synergy, we must define what is Shared in real world execution (like Teams,
Information, IT Operations) and which Models are Reused (like Roles, Components, Solutions,
Information Models)

In this white paper we focus on Synergy which is represented by the 4 cubes behind (E, F, G, and H).
Synergy is not only Reusing Models, it is also Sharing Resources.

F and H are “Reusable Models ”: they represent the Foundation

• F is Operation Foundation ; it includes all Model elements Reused in Operations:
o Operation Components to Build internal Solutions,
o pre-Built Solution Models (provided by Package providers or by a Group Unit working

for several Companies of the Group)
• H is Transformation Foundation: it includes all Models elements Reused in Transformation like:

o Project Approach
o Tools Reused to Build Solution Models and Operation Foundation.

E and G are “Shared Resources” between Solutions

• E includes Shared Resources for Operations such as
o Shared Units (like a centralized HR Unit which Operates for all Companies of a Group),
o Shared information (like a centralized Customer referential which is accessed by all

Solutions),
o Shared IT Operation Units (like a centralized IT Operations Center which runs Solutions

for different Companies of a Group)
• G includes Shared Resources for Transformation such as

o Shared Foundation Team (like a centralized Architecture team which works for different
Companies)

o Shared repository of Components

08/10/2009
10

Page 6

Synergy: Share Resources and Reuse Models

The Model
(Doc and
Software)

Transformation Operations

Agility

Complexity

Real World
execution

Synergy

Share
Transformation

Resources

Share
Operation
Resources

Reuse
Transformation

Models

Reuse
Operation

Models

Ex: Reuse
same Services

Ex: Reuse same
Approach and

Tools

Ex: Share
Foundation

Team

Ex: Share HR
Unit, Share
ReferentialEG

FH

(See more detailed Cube in exhibit).

2.3 Reusing first or Sharing first?
Reuse then Share
Foundation is essential to Sharing Resources:

• All Companies of a Group cannot Share Customer Information in a single referential, if they do
not agree to first Reuse the same Customer Information Model: What is a Customer? Which
identifier? Which Attributes to define him?

• We cannot Share the same HR Unit between different Companies of a Group if we do not Reuse
the same HR Solution Model.

This is why it is more efficient to first Reuse the same Model. Sharing Resources will come after if really
necessary.
For example:

• Companies could Reuse the same Customer Information Model, but not Share the Customer
Repository: each Customer file remains private inside each Company of a Group

• Companies of a Group could Reuse the same HR Model without Sharing the HR Department

In some decentralized Groups, it has been decided to first centralize different Units working differently
because they apply different Models.
Then, as all Actors are under the same responsibility, it seems easier to Build and progressively deploy
the same Model in the new Unit.

The exhibit “Sharing is not Reusing” details different combinations of Solutions.

For example, the following scenario describes the key principles in organizing a Group made up of
different Business Lines : each Business Line owns Companies in each Country.

• Transformation: Centralize Building of Models
o Models for horizontal activities such as Human Resources, Legal Accounting,

Procurement, CRM are centralized at Group level: they can be customized at Company
level if necessary

o Models for vertical Activities specific to each Company are centralized at Business Line
level: but each Company should be able to customize this Model

• Operations: Decentralize Execution of Models
o all Operations for Horizontal or Vertical Activities are executed by each Company

08/10/2009
11

o the role of the Group Managers is to Build Horizontal Models and check that they are
applied

o the Role of the Business Line Managers is to Build the Vertical Models and check that
they are applied by Companies

o Centralize some Units if necessary
� for better negotiation, part of procurement activities are centralized at group or

Business Unit levels
� for lack of experts, legal Operations are centralized at group or Business Unit

levels

Page 4

Group
•Builds/checks its Horizontal Model

Business Unit A
•Builds/Checks its Vertical Model

Business Unit B
•Builds/Checks its Vertical Model

Company 1
•Customizes the Vertical
model
•Operates

Company 1
•Customizes the Vertical
model
•Operates

Company 4
•Customizes the Vertical
model
•Operates

Company 3
•Customizes the Vertical
model
•Operates

Centralization and Decentralization

Many other scenarios may exist.

Now we will concentrate on Foundations which group the Reusable Models: Operation Foundation
(decomposed into Black and Building Foundation) first, then Transformation Foundation .
Those interested in Sharing can read the Exhibits “Sharing Operation Resources” and “Sharing
Transformation Resources”.

08/10/2009
12

• Page 5

Synergy

Foundation =
Reused Models

Shared
Resources

Transformation
Foundation

Operation
Foundation

Exchange
Foundation

Building
Foundation

Shared Transformation
Resources

Shared Operation
Resources

Synergy

08/10/2009
13

3 What is Operation Foundation?
How did we identify Reusable Components?
We met with:

• Sponsors : Air France, Axa, Total and some other large users
• large Suppliers : Google, IBM, Microsoft, Oracle, SAP and smaller Suppliers : Orchestra

Networks, SalesForce, Softeam, Wyde
Individual answers are delivered to our Sponsors. In this white paper, rather than giving individual
summaries, we prefer to present a global overview by topic.

After analyzing these reusable Components, we finally classified Reusable Functions according to 2
dimensions:

• Components are customizable (White components) or not (Black Functions)
• Reusable Functions are Built with the same Transformation tools as Solutions

Box A welcomes SOA Functions and requires Middleware.
Box B is adapted to Solution Builders who have the right to customize the called Functions (not frequent)
Box C represents libraries of non-customizable Functions which are linked as libraries provided by the
Technology providers. Enterprises have always reused these Libraries.
Box D represents the Functions which can be customized with the same Transformation tools. This is a
very powerful way of increasing Reusability.

Page 9

Black Function =
« Call »

White Function =
« Build from »

Exchange
Foundation
(Use different Transformation
Tools for Foundation and
Solutions)

A Interoperability
Ex: SOA Business Functions

B Customizable Functions
Ex: Functions provided by
Component Suppliers which
can be Customized

Building
Foundation
(Reuse same Transformation
Tools for Foundation and
Solutions)

C Libraries of Functions
Ex: UI Libraries or Data
Access Functions (from
Oracle or Microsoft or IBM...)

D Specialization
Ex: Inherited Business
Objects

Categories of Reusable Functions

TOGAF uses similar concept called “Building Block” which is considered more for Exchange Foundation
than Building Foundation : see http://www.opengroup.org/architecture/togaf9-doc/arch/chap37.html

We decided to call “Exchange Foundation ” all elements required for interoperability between Solutions:
Solutions can be Built with different Transformation tools, but they exchange. It brings unicity of
information, good structure, independence and decreases complexity. Example: call the Security
Function.
"Building Foundation" gathers all possible Reusable elements when Solution Models are Built with the
same Transformation tools. It brings Agility, unique User Interface and decreases complexity if it is well
Built (see below). Example: Life Insurance Contract is a specialization of Insurance Contract.

All enterprises should have an Exchange Foundation.

08/10/2009
14

Enterprises for which Agility is strategic should have a Building Foundation.
Before detailing Exchange and Building Foundations, we will discuss Reuse and Sharing.

Package Providers continuously improve their Foundation to reduce the complexity of their offer and
increase its capacity to adapt the package to Customer needs.
Buying a Solution Package means importing its Foundation; coexistence of Package Foundation and
internal Enterprise Foundation is one of the main difficulties facing Enterprise today: we will come back
to it in the last chapter.

3.1 Exchange and Building Foundation

Page 10

B
ui

lt
W

ith

B
ui

lt
W

ith

Exchange Mechanisms

Building Foundation

Transformation Foundation

Solution
Map

1-Information Owned by the Solution
2-Black Access Function offered to
other Solutions
3-Call a Black Function
4-Built with a White Function
5-Private Function

1

2 3

4 5

Exchange and Building Foundation

Exchange
Foundation
Exchange

Foundation
Solution 1

Solution 2 Solution 3

A Solution Model formalizes a set of Processes and/or Functions: it formalizes Human procedure,
software, information, into a Solution Model which not only contains Software but also all Human
Documentation useful to execute Business activity.
An Enterprise Architecture is made up of Solution Models: CRM Solution Model, HR Solution Model,
Pricing Solution Model… It is represented by the “Solution Map ”.
Each Solution Model owns its Information, represented by the yellow cylinder on the slide.
Each Solution Model may be executed one or several times. For example the same HR Model may be
executed in each of the 10 Companies of a Group: in this case there are 10 executed Solutions for 1
Solution Model . We focus on Solution Models.

3.1.1 Exchange Foundation
When Solution Models are independent, they are easy to manage: decision, execution, evolutions are
decided, executed and checked at a decentralized level: no coordination is required. Governance is very
simple.
But it means Information duplication, double Information entry, redoing the same thing several times, and
impossibility of exchange…
So it is necessary that these Solutions interoperate . To succeed interoperability, it must be decided
which Solution owns what Functions and which Information . For example it can be decided that the
Customer file will be owned by the “CRM Solution” and the Function “Am I authorized” will be owned by
the “Security Solution”.
Then Each Solution must provide a “Black Function ” to allow each other Solution to benefit from its
Functions and Information. A Black Function (or SOA Function in IT language) is composed of an
Interface (or a “Contract”) which defines how to call it and an Implementation which defines how it

08/10/2009
15

works. It is important to hide complexity of Implementation to the caller who just knows the Interface and
does not know how it is implemented: this is why we call it a “Black Function” like a Black Box.

Note that it is a Black Box for the Caller, but not for the Called Solution which must Build it.

The same Solution can be together a Called Solution when it offers Black Functions to other Solutions or
a Caller Solution when it asks for a Black Function to other Solutions.

To give access to its own information the Called Solution proposes Information Access Function and
does not authorize direct access to its Information: it allows changing of Information Model without
changing Interface and disturbing all the Caller Solutions.

In the end, each Solution only offers Black Functions to external Solutions: some to access information,
some to execute a specific Business Function, some to feed Solution with input Information.

The set of Black Functions coming from all Solutions is called Exchange Foundation .
Exchange Foundation ensures interoperability: no double data entry, unicity of Information, offer of
Reusable Functions. Interoperability simplifies Enterprise Architecture and reduces the work required to
Build a new Solution Model.
Each Solution can be Built with different Transformation tools as long as it can call Black Functions
and offer new Black Functions to the community. It requires that a Foundation team defines for all:

• Which Solutions own what
• Which Reusable Information Model must be respected by all Black Functions so that Solutions

understand each other: Business Concepts, identifiers, Attributes, types
• Which repository to help Solution Builders to identify useful Black Functions
• Which IT Infrastructure to intercommunicate (network, Middleware)

The Foundation team does not implement the Black Functions: it is done by each Solution team.

3.1.2 Building Foundation
Once Exchange Foundation is efficient you can go further and Reuse Building Foundation.
There are 2 forms of Reuse: Reuse by composition and Reuse by specialization.
Reuse by Composition means that you assemble your Solution Model by calling external Black
Functions as we just discussed.
Reuse by Specialization is Building a Model part which looks like another one. This is called
Specialization in the Object Oriented Approach: a Damage Insurance Contract inherits from an
Insurance Contract which in turn inherits from a Contract:

• “a Contract” has attributes such as: Product, Subscriber, date of subscription, account for debit
• “an Insurance Contract” adds: you are only allowed to use Insurance Products and not all kinds of

Products, Beneficiaries…
• a “damage insurance contract” adds: the Good to insure

You can specialize not only Information, but also Functions, User Interface, Types…
The system becomes efficient if a change at a father level automatically benefits the cascade of sons
who inherited from the father.
White components can be:

• UI Components to Build UI interface
• Information Access Mechanisms to Build Information Access Functions
• Type Definitions and Functions
• Business and Organization Objects from which it is possible to specialize new ones
• Process Components to Build new Processes

3.1.3 Benefits are not the same for Exchange and Bu ilding Foundations?

08/10/2009
16

Page 11

Visibility

Information Unicity
(Single Data Entry,

Shared Information)

Modularity

Exchange Foundation Building Foundation

Agility,
Time to market

User Interface
Consistency

Simplification

Which Benefits?

Exchange Foundation allows Solutions to Interoperate, benefits are important:

• Visibility of Enterprise Architecture: current and future Solution Maps help to understand the
Enterprise Architecture, to align Solutions to strategy, to manage a project portfolio

• Single Information: exchanges between Solutions allow defining of which Solution owns which
Information. It is then possible through Exchanges, to query or to update Information owned by
another Solution. Information is consistent and there is no more duplicate data entry.

• Modularity: it is possible to specialize Solutions by Functional domains: Accounting Solution,
Business Intelligence Solution, Call Center Solution and concentrate specialized knowledge by
Solution.

Building Foundation allows us to Build or Modify Solution Models with same Transformation Tools to
take advantage of pre-Built components. It brings complementary benefits:

• Agility and time to market: gains can be much higher than with just Exchange Foundation. You
can divide by 3 time and money for new Solutions if Foundation is powerful (see below)

• User Interface Consistency : all Solutions may be Operated with same User Interface, which
reduces deployment efforts, increases productivity and facilitates staff mobility in the
Organization

• Global simplification : the size of the Enterprise Model (easy to measure with Software) is
dramatically reduced when Reuse rate is high.

• Lower risk : the more pre-tested software you use, the less risk you run of generating defects in
your solution (it is also an advantage of Exchange Foundation but at a lower level)

3.1.4 What differences and similarities?
White Functions represent a different kind of Reuse than Black Functions:

• this is not “at Operation time, Solution calls a Model element provided by someone else”,
• this is “at Transformation time, the Transformer Builds Solution Model from Solution parts”: these

Solution parts will be called “White Components ”.

White Components are useful not only to Build Solution Models but also to Build Black Functions.

Reuse of White Functions requires Reuse of the same Transformation Tools, which is not true for
Black Functions.

08/10/2009
17

All Enterprises must have an Exchange Foundation to allow interoperability, while some Enterprises
should have a Building Foundation - mainly those for which Agility is strategic. The choice is not
between Exchange or Building Foundation, it is between “Exchange Foundation only” or “Exchange
Foundation and Building Foundation”.

Remark: in France, the Approach for creating an Exchange Foundation is called “Urbanism”.

Governance of Building Foundation is more intrusive, as you impose Transformation Tools. Exchange
Foundation can be used progressively by Solutions, while Building Foundation can only be Reused
when a Solution Model must be created or deeply renewed.

Reuse is much more important for Exchange + Building Foundations, than for Exchange Foundation
only: some attain an 80% Reuse rate , which means that only 20% of the new Solution Model is to be
Built.

A good strategy is to start with Exchange Foundation , because everything that is done for Exchange
Foundation will be useful for Building Foundation: creation of the Foundation team, definition of a
Reusable information Model, first level of Governance to respect Foundation… are all first steps for
future Building Foundation.

Enterprises who choose Exchange and Building Foundation will keep Packages for commodity
Solutions . Each Package comes with its own Foundation. It means that they will use Exchange
Foundation for all Solutions, but Building Foundation only for Evolving Solutions .

Page 13

Legacy
Transf. Tools

Enterprise Solution Map

Enterprise
Building Foundation
Enterprise

Transformation Tools

Solution 1 Solution 2

Solution 3

Exchange and Building Foundation

Package
Solution

Legacy
Solution

Package
Building Found.

Package
Transformation Tools

Legacy
Build.Found.

In this example:

• an Enterprise has decided to Build Exchange and Building Foundation
• the Enterprise executes 3 kind of Solutions:

o New Solutions (1,2,3) Built with Enterprise Building Foundation
o Package Solutions Built with Package Building Foundation
o Old Legacy Solutions which could benefit from limited Legacy Building Foundation

• there is a single Exchange Foundation for all Solutions, but several Building Foundations

3.1.5 Why “Black” and “White”?
The OMG recommends the use of these terms "Black" and "White"; they even go further with Clear-box
assets and Gray-Box assets.

08/10/2009
18

The variability and visibility of an asset is another key property of an asset. At the one extreme an asset can be
invariable, that is it cannot be altered in any significant way. This is often the case for assets that are component
binaries. Assets at this end of the spectrum are sometimes called black-box assets, since their internals cannot
be seen and are not modifiable. At the other end of the spectrum are white-box assets. These assets are
created with the expectation that asset consumers will edit and alter its implementation. White-box assets also
typically include development artifacts such as requirements, models, build files, etc. Two other variations in
between are clear-box assets and gray-box assets. Clear-box assets expose implementation details (via models,
code fragments, or other documentation), however they cannot be modified. These details are exposed solely to
help the consumer better understand the inner workings of the asset, so that the consumer can use the asset more
efficiently. Gray-box assets expose and allow modification only to a subset of the asset’s artifacts, usually through
the parameters on the asset.

A Black Function is Built in 2 parts: Interface and Implementation.
The Solution calls the Black Function through the Interface (or the “Contract ”) and does not need to understand
Implementation: this is why it is called “Black” like a black box.
A White Function is visible by the Solution Builder through the Transformation Tools: he can specialize it.
A Clear-box Function is a Black Function which allows its implementation to be read, but not changed.
A Gray-Box Function is a White Function which is customizable only by Configuration (and not software
development).

3.2 Which elements are in Operation Foundation?
We propose now to list what is inside this Operation Foundation.
If some readers are interested in going into more detail, they can read the Exhibit “Detailed Operation
Foundation”.

If you Build a new specific Solution Model because you want, for example, to support the launch of a
new specific Product, synergy may be obtained in 2 ways:

• you decide to Reuse a pre-Built Solution Model (like an Application Package provided by a
Software editor, or a Solution Model Built by a Group for its different Companies) and customize
it

• you decide to Build a new Specific Solution Model Reusing Components like GUI component,
information access, business component, organization component or Solution Structure.

To Build a Specific Solution based on Reusable Components, you first must Build these Components
which in turn may be Built by reusing other Components: for example the Security Component could
Reuse Information Access Functions or UI Functions.

Togaf defines that “Components” or “Building blocks ” must have generic characteristics as follows:

• A building block is a package of functionality defined to meet the business needs across an
organization.

• A building block has a defined boundary and is generally recognizable as "a thing" by domain
experts.

• A building block may interoperate with other, inter-dependent, building blocks.
• A good building block has the following characteristics:

o It considers implementation and usage, and evolves to exploit technology and
standards.

o It may be assembled from other building blocks and It may be a subassembly of
other building blocks: it means that we must not manage a flat list of Building Blocks but
a structure of Building Blocks which Reuse each other

o Ideally a building block is re-usable and replaceable, and well specified.
• A building block has a type that corresponds to the TOGAF content metamodel such as actor,

business service, application, or data entity (this is why we include Reusable Information Model,
Reusable Functions, Reusable IT Configurations… in Operation Foundation).

OMG prefers the term Reusable Assets (see http://www.omg.org/cgi-bin/doc?formal/2005-11-02) .

(for other Frameworks see : http://www.pragmaticea.com/)

08/10/2009
19

We tried to classify all elements described by the different Standardization organizations into a single
breakdown.

Page 14

Hardware standards and OS Mechanisms

Reusable Processes:
composition and inheritance

Process Components

Business Functions

Technical Foundation

Specific-Business Functions

Type Functions

Info. Access
mechanisms

Security
Functions

Information
Access Functions

Cross-Business Functions

Core Foundation

Organization
Functions

Workflow
Functions

Exchange
Interfaces

Reusable UI
Elements

Exchange
mechanisms

UI Mechanisms

Solution Structure

Reusable Solution
Models

(Package or Internal)

S
olution M

odel M
ap

HR
Solution

Accounting
Solution

Solution Models Built
with Components

Customized
Solution Model

Solution Models Built
with no Components

C
om

ponents

Operation Foundation

We propose to describe the different layers in a bottom-up and not a top-down order, because upper
Components Reuse lower Components: we must understand the lower Components to understand how
upper Components are Built.

3.2.1 Reuse Human Actor Roles for Operations
(For simplification purposes, this element of Operation Foundation is not represented in the slide).
Human Actors are employees, partners, prospects... Each of them occupies a Position in the
Enterprise Organization. Each Position is located in the Organization chart and plays a Role like “Sales
Man”, “Assistant”, “Branch manager”…
The same Role definition can be Reused for different Positions. It will help Solution Builders to assign
Activities to Actors (Workflow) and to define Profiles of Rights and Duties (Security).
Remark: Organization chart is not part of Model, it represents real life, with real Actors.

What works today?
Most Enterprises have well defined Operation Roles .
Sometimes, Roles are too numerous which prevents the assigning of a larger set of Activities to Actors.
If Foundation includes Reuse of UI elements and allows for standardization of user interface, if
Foundation allows access to Information from everywhere, then each Actor will be able to do more
because the effort to switch from one Activity to another is lighter: “the more UI Foundation, the fewer
Roles ”.

3.2.2 Reuse hardware standards and OS mechanisms
Same IT configurations can be Reused by different Solutions:

• one or a limited number of Operating Systems
• Hardware Model: Reuse one standard Work Station, one type of Server
• Network Model: Reuse same protocols for information exchanges (data or voice)

Remark: this is just Model description and not the description of all IT infrastructure (CMDB in ITIL terms)
which is described in “Shared IT Infrastructure”.

What works today?
They exist for most Enterprises.

08/10/2009
20

3.2.3 Reuse Access mechanisms to Information
Each Information Access Function must be Built by Reusing powerful Access Mechanisms which
lighten tasks such as: access Business Objects rather than tables, manage Versioning , allow
dynamic attributes … (see exhibit for more details).

3.2.4 Reuse Information Model and Access Functions to Information
Some Information Models can be reused by the different Solutions. It enables us to:

• define exchange formats between Solutions (Black Functions) and save time when Building
Solutions

• Share Information (see exhibit “Sharing Operation Resource”).

Before Reusing Access Mechanisms to Build Reusable Access Functions, the Enterprise must define its
Information Model.
The Information Model is broken down into 2 parts : Information Structure and Attributes

• the Information Structure includes a Business Glossary , Business concepts , identifiers ,
Relations between these Objects (Ex: an Insurance Contract Relates to the Customer, the
Product, the Account…), inheritance between Objects (ex: a Life Insurance Contract inherits
from an Insurance Contract). The Business Glossary describes main Business Entities and
their relations: it creates a common business language and helps define precise specifications. It
is completed by Maps for Entities , also called “Entity Relation Model”: which describes main
Business Entities, their relations and inheritance. This is the first Map to build.

• Once the structure is ready, it can be progressively filled with Attributes , according to needs
coming from Functions.

Note that the Information structure is key: changes of concepts, or Relation cardinalities are expensive,
while adding Attributes to a stabilized Information Structure is not so difficult.

Industry Information standards must be used as much as possible: each industry is defining its
Information Model. Take advantage of these standards when defining your own Information model (see
exhibit for more details).

Enterprise must also define Reusable Types : how to represent a date, a name, an amount, a text…
It defines how to present the Type to the Human Actor and how to store the Type for the Computer
Actor. Types are not considered as important topics in most Organizations: people have not understood
that the huge cost of “year 2000” or “euro conversions” were mainly linked to absence of Reusable
Types in organizations.

Once

• Access Mechanisms are available
• The Information Model is defined
• Types are defined

it becomes possible to Build Functions to access Information.

The Operation Foundation includes Reusable Information Access Functions to Actors, Addresses,
Accounts, Products, Contracts, Organization…

Comments on what really works today:
• Very few Enterprises have defined their business glossary, their Business Entity relation Model, their

Types; many have defined Table contents for Shared Repositories
• Reusable Access Functions to Shared Repositories (like customers, organization, directory, product

catalog) have been Built.

3.2.5 Reuse Exchange Mechanisms between Solutions
Solutions exchange with other Solutions: synchronous or asynchronous, for read Information or write
Information or feed inputs or execute Functions.

08/10/2009
21

The exchange can be executed using a Middleware which converts information (using XML, PDF, flat
file, mapping…), finds the Target Solution and sends. It can be also executed by a simple call inside the
same executable (like a DLL).
The Solution Builder must call the external Function without knowing if a middleware will or will not be
used.
The choice is made by the Foundation team which hides complexity of middleware to Solution Builders.

Comments on what really works today:
All Enterprises have well defined Exchange Mechanisms through Middleware definition.
But many Reusable Functions do not require Middleware: you do not Build a Web Service to check Date
validity, you generally use a much lighter mechanism.
Function Interface must be independent from exchange mechanism.

3.2.6 Reuse Exchange Functions (the “Adapters”)
Exchange Mechanisms allow us to Build Interfaces (or “Adapters ”) between Solutions. They must be
publicized to help Solution builders when they want to connect their Solution to other existing Solutions.

What works today
Most of our sponsors provide internal Adapters to help Solutions Builders when they want to connect
their Solution to other existing Solutions.
But as they use independent tools to Build Solutions and to document Adapters, some have difficulty in
synchronizing updates in Software and in Repositories: some Project Leaders prefer to contact Function
Providers directly and not the Foundation team which generates overload: an integrated set of
Transformation Tools would help to synchronize Information (see after: Transformation Foundation).

3.2.7 Reuse User Interface Components
Reusing the same consistent and powerful user interface (presentation, navigation) for all Solutions
allows more efficiency. It can be done by defining documented UI policy . This policy is more easily
applied if UI Components are offered which implement this policy.
Reusing pre-built UI elements (by composition or inheritance) also helps save time when Building new
Solutions.

Comments on what really works today
Look and feel standard documentation exists in most Enterprises.
But Reusable UI Elements do not exist : User Interface Building is still a specific task with no Reuse.
User Interface Building is a very costly Transformation activity; it requires many iterations before end
user is satisfied. Improving Reusability in this domain is an important productivity factor.

3.2.8 Reuse Functions related to Types
Each attribute relates to a Type.
The Attributes “Birth date”, “subscription date”, ‘Value Date” all Reuse the same “Date” Type.
For each Type we can define Rules: check Functions, presentation Functions, internal representation.
Define reusable Types like: Enumerated, Date, Amount, Number, name, text, table, tree, image, video,
sound...means that attached Rules are also Reusable.
For example the Date Type should offer

• check Date validity
• compute the number of working days between 2 dates
• present a date in European or US format
• …

More complex Functions are related to Types like:
• word processing Functions: provide a reusable Text Type which allows embedding of Text

Attributes inside Objects and provides Text editing functions to the end user.
• table processing Functions
• Video, Audio processing Functions

All these rules are simple, but they are Built hundred and thousands of times in large systems and
contribute to the overall complexity.

08/10/2009
22

Comments on what really works today
Types are not Reused in most Enterprises.
This is mainly due to the absence of powerful Type Mechanisms in most Transformation Tools.

3.2.9 Reuse Solution structure
Different White Components may offer several Implementations:
Solution Structure contains those Implementations that have been chosen for the current Solution.

• Preferred Security Functions
• Preferred UI presentation
• Preferred Desktop
• Preferred Types
• Preferred Language
• …

Comments on what really works today
Exists in some Packages.

3.2.10 Reuse Organization Functions
These Functions are linked to Organization. They are highly Reusable. They provide help for assignment
of Activities (Workflow) and security.

Comments on what really works today:
• Single sign-on is in place or will be in near future in most Enterprises.
• Security Functions: they exist in all Enterprises, but very few Enterprises have a unique Security

Function
• Workflow Functions exist in some Solutions, but are never generalized as a unique Reusable

Function for all Solutions

3.2.11 Reuse Business Functions
They can be reused as full available Functions (Black Function) or as a skeleton or pattern (White
Component) which accelerates Function Building.
Business Functions are split between Specific Business Functions which belong to domains such as:
Bank, Industry, Insurance, Telecom, Utility…, and Cross-Business Functions which are the same for
all Business domains.

Comments on what really works today:

• Many Enterprises would like to Build and use Business Functions. Very few have done it
because it is difficult. SOA is just emerging.

• Success appears to exist in 2 cases:
o either Business Information Model is perfectly defined : then it allows companies like

Amadeus to provide Business Services highly Reusable by its customers. Amadeus is
progressively increasing its offer by adding new powerful Business Functions: it started with
Reservation Functions (“Global Distribution System” or GDS), then proposed Airline internal
IT functions such as Inventory or Departure Control Functions (DCS)

o or inheritance features isolate what is Reusable from what is specific

3.2.12 Reuse Process elements
It is possible to build new Processes using Process Patterns or Process composition.

Process Patterns are used when different Processes look like each other. For example “Subscribe a
Car Insurance Contract” and “Subscribe a Home Insurance Contract” are different but have a lot in
common. Each Process call Functions like: get subscriber Information, select offer, choose options,
compute price, bill, compute commission and enforce the Contract. The common part can be Modeled in
a Process Pattern, which is the base on which each specific Process is Built.

08/10/2009
23

Process Composition is used when a Process calls other Processes: for example the Process
“Welcome a new employee” calls Processes such as “Deliver a security card” or “open a new email
account”.

What works today?
Process patterns are not used by Enterprises.
Process Composition is used by some Enterprises: they may compose new Processes by calling
existing Sub-Processes.

3.2.13 Reuse Solution Models
Up to now, we have described Components which are Reused to Build new Solution Models.
But, the Solution Model is not always Built internally, it can be an External Solution Model Built by an
external team: a Package Provider or a Group team which Builds a Solution Model reusable by the
different Companies of the Group.
In both cases, the Reused Solution Model must be customizable for each Company: choose currency,
information ownership, UI standard presentations, pricing rules, language...
Customization can be executed by configuration or by extension .

• Configuration can be done by parameters, Rule Engines, Workflow Engines: it requires
structured skills but not Software developer skills

• Extension is done by software development, mainly using inheritance mechanisms; it requires
developer skills

Remark: Reusing a Solution Model does not necessarily mean that associated Business Units are
centralized. In a Group of 10 Companies, the same HR Solution Model can be Reused by 10 different
HR Units which Operate by independently.

What works today? Packages are widely used for Commodity Solutions. They can be used for Evolving
Solutions if they have a strong Foundation allowing customization and extensions.

3.2.14 Reuse Solution Map
The Enterprise Model formalizes a Global Model for the Enterprise: we then use the word “Map”.

• Enterprise information Map has been described above.
• as Solution Model describes Business Processes and application Software, the Solution Maps

define 2 domains:
o Maps for Processes : describes classification of Processes from Business Domains. This

Map focuses on Business Processes independently of current Organization.
o Maps for Applications : describes Solutions Software Model and their exchanges.

Solution Builders Reuse these Maps to
• better understand the Enterprise Architecture
• ease relations between Business Actors and IT Actors
• identify Processes they must handle
• define precise Solution perimeter

There are 3 kinds of Solutions:

• Specific Solutions Built without Enterprise Components (like Legacy Solutions)
• Specific Solutions Built with Enterprise components (for new evolutive Solutions)
• External Solutions Built with Enterprise Components (if Built internally) or Package Provider

Components (for Commodity Solutions).

Maps for Entities are stable Enterprise Models.
Maps for Processes and Maps for Applications shift according to Organization changes and delivery of
successive Solutions.

What works today?
Enterprise Information Map exists neither in Enterprises nor with Providers.

08/10/2009
24

Process Map exists for most of our Sponsors, but their Map represents Organization Processes and not
Business Processes. Package Solution Suppliers also define this Process Map.
It sometimes goes beyond Process level and also describes breakdown of Processes into main
Functions.
Application Map exists in most Enterprises. It is sometimes called “Application Cartography” or
"Urbanism” in France.

3.2.15 What about Referentials?
Remember that Information Model includes: definition of Entities, Relations between Entities, Attributes
and Types.
Reusing the Model means that Reusable Information Access Functions must be provided.
Referential Model is one of the first Foundation elements to Build.

“Referentials” generally means: Reuse Information Model and Share Information.
For example, a Bank wants to keep an updated file on Stopped Payment Accounts available for all
subsidiaries, or a Group wants to share the Profiles of all its Employees, so that they can use any work-
station in any Company of the Group.

Sometimes Companies just want to Reuse Information Model but not to Share Information. This is the
case when the same Solution Model is deployed in different Companies, but each Company keeps its
own Information.

Sometimes, it is a mix : for the same Business Entity, Companies of the same Group can Share just part
of the Information. Let’s take an example: for Customer Information

• use the same Customer Model; Information is shared in 2 parts: identification information (name,
address, birth date, email, telephone) and comments on Customer

• Share identification Information
• do not Share comments on Customer

Sharing Information requires Rules: who is responsible for updates (the owner), who can access the
Information: use the Security Function defined above.
When Information is Shared it can be achieved in 2 ways:

• a single centralized data base to which everyone has access: when real time update has to be
offered to users

• replication from a master data base to local data base: when independence of local Operations is
required

Replication allows each local Company (or factory) to Operate independently from availability of a
central database.
A good example is given by the Oberthur Card System: They have factories to make smart cards in
different countries (China, France, US, UK, …).
They decided that each factory should Reuse the same Product Catalog, but that each factory should
Operate locally without being dependent on the availability or performance of a worldwide data base:
replication has been deployed. Each time there is a Product modification, the master Solution sends
updates (and only updates) to Factories which subscribed to Product Modifications. It has allowed the
company to manufacture the same products all over the world.

3.3 Which elements belong to Exchange or Building F oundations?
We now classify these elements into 2 domains:

• Components which allow Solutions to intercommunicate: the Exchange Foundation
• Components which require Reuse of the same Transformation Foundation: the Building

Foundation

3.3.1 The Exchange Foundation
Exchange Foundation allows the different Solutions to interoperate: a Solution may access Information
owned by another Solution or execute a Function provided by another Solution.

08/10/2009
25

Solutions Models can be bought or Built independently with different Transformation tools.
The Foundation team must define a clear structure of Solutions (breakdown into Domains, Areas...)
and clear Interfaces between Solutions .
The Perimeter of each Solution must be defined so that exchanges between Solutions are minimized:
low coupling is required.

It mainly requires what is Black on the slide above:

• Exchange Mechanisms (Middleware)
• Exchange Interfaces or Adapters based on these Exchange Mechanisms: synchronous

question-answers, synchronous updates, Asynchronous feeds (see above)
To define clear Interfaces, the Reusable Information Model must be clearly defined: Business entities,
identifiers, attributes, types . But Access Functions are owned by each Solution; this is why only part of
Information Access Functions is blue.
The Reusable Types must be documented: but the specific Transformation Tools of each Solution does
not allow us to automatically Reuse Types .
Business Functions and Organization Functions can be offered to Solution Builders.
When a Process chains sub-Processes modeled in different Solutions, a Workflow engine based in one
Solution may call these different Sub-Processes .

3.3.2 Building Foundation
Solutions are Built with the same Transformation Foundation: a pre-defined set of tools and Approaches.
It allows us to increase Reuse possibilities: Reusable Types, inheritance of pre-built Classes, UI
Components, workflow mechanisms replicated in different Solutions for task assignment, Process
patterns... If the Foundation is mature, Reuse rate may reach 80%, which means that there is just 20%
of work to do to Build a new Solution Model. In return, the Foundation must be powerful and supported
(see below).
Building Foundation includes:

• Transformation approach and Transformation Tools are inside Building Foundation but not
inside Exchange Foundation, as each Solution can be Built independently; they just need to be
able to communicate: the only constraint is that Solution Builders must Reuse Black Functions
(must be included in all Transformation Approaches) and require a Repository tool to retrieve
these Black Functions

• Hardware Standards and OS Mechanisms are not part of Exchange Foundation: each Solution
may choose different hardware and OS

• Exchange Interfaces (Adapters) and Mechanisms must be part of Exchange Foundation
• Information Access Functions and Information Mechanisms are not part of Exchange

Foundation, but Business Entity Model must be part of Exchange Foundation to ease exchanges:
same Business Concepts, same Attributes, same relations

• Reusable UI Elements and UI mechanisms are not part of Exchange Foundation
• Type Functions are not part of Exchange Foundation; but Type definition must be part of it to

allow exchanges
• Some Organization Functions like Security Function or single sign-on are part of Exchange

Foundation, but other Organization Functions such as “Assign next Activity to next Actor” or
“Manage a To Do list”, or “update Calendar” are not part of Exchange Foundation

• Business Functions callable via SOA or other inter-solution mechanisms are part of Exchange
Foundations, but Business Functions reusable by inheritance are not.

• Inheritance of Processes are only available in Building Foundation.

3.3.3 A mix of both approaches
When Enterprises decide upon a Building Foundation approach, they still prefer to buy Solution
Packages for commodity Solutions. These external Solutions import their own Foundation.
It means that these external Solutions will be integrated through Exchange Foundation, while internal
Solutions will benefit from full Foundation.

08/10/2009
26

Page 15

Hardware standards and OS Mechanisms

Reusable Processes:
composition and inheritance

Process Components

Business Functions

Technical Foundation
Info. Access
mechanisms

Core Foundation

Organization
Functions

Exchange
Interfaces

Reusable UI
Elements

Exchange
mechanisms

UI Mechanisms

Solution Structure

Reusable Solution
Models

(Package or Internal)

S
olution M

odel M
ap

HR
Solution

Accounting
Solution

Solution Models Built
with Components

Customized
Solution Model

Solution Models Built
with no Components

C
om

ponents

Exchange Foundation is part of Foundation

Specific-Business Functions

Cross-Business Functions
Security

Functions
Workflow
Functions

Type Functions

Information
Access Functions

This slide summarizes the main differences between Exchange and Building Foundation:

• Transformation approach and Transformation Tools are inside Building Foundation but not
inside Exchange Foundation, as each Solution can be Built independently; they just need to be
able to communicate: the only constraint is that Solution Builders must Reuse Black Functions
(must be included in all Transformation Approaches) and require a Repository tool to retrieve
these Black Functions

• composition and inheritance of Processes are not part of Exchange Foundation
• Some Organization Functions like Security Function or single sign-on are part of Exchange

Foundation, but other Organization Functions such as “Assign next Activity to next Actor” or
“Manage a To Do list”, or “update Calendar” are not part of Exchange Foundation

• Business Functions callable via SOA or other inter-solution mechanisms are part of Exchange
Foundations, but Business Functions reusable by inheritance are not.

• Type Functions are not part of Exchange Foundation; but Type definition must be part of it to
allow exchanges

• Information Access Functions and Information Mechanisms are not part of Exchange
Foundation, but Business Entity Model must be part of Exchange Foundation to ease exchanges:
same Business Concepts, same Attributes, same relations

• Exchange Interfaces (Adapters) and Mechanisms must be part of Exchange Foundation
• Reusable UI Elements and UI mechanisms are not part of Exchange Foundation
• Hardware Standards and OS Mechanisms are not part of Exchange Foundation

08/10/2009
27

4 What is Transformation Foundation?
Now, let’s define what is inside Transformation Foundation .
If some readers are interested in exploring this in more detail, they can read the Exhibit “Detailed
Transformation Foundation ”.
If some readers are interested in Transformation Shared Resources , they can read the exhibit
"Operation Shared resources ".

Transformation can be defined as Transformation Actors (Human Actors and Computers) executing
Transformation Actions (Projects, maintenance) with Transformation Information.
In Transformation Foundation we group:

• Reusable Transformation Roles : project Manager, Business Analysts, Developers
• Reusable Transformation IT Configuration : hardware, OS and network which are used
• Reusable Methodologies , Good practices, and Tools to support them
• Reusable Information Model for Transformation

All of them can be Reused by the different Companies of a Group or by different teams in a Company.

4.1 Reusable Roles for Transformation
First question is: “Do Enterprises define Reusable Roles?”

Many Roles can be defined for Transformation Purpose like: “Project Leader”, “Project Pilot”,
“Business Analyst”, “Designer”, “Developer”, “Tester”, “Business Architect”, “Technical Architect”.
An Enterprise may decide to define a single list of Roles: it will help to describe the precise
assignment of Activities to Actors.
Example of Reusable Roles:

• Sponsor : the one who defines the Problem, funds the project, make decisions and
checks obtained value

• Project leader: the one who manages the Solution Building team
• Business analyst : the one who defines requirements, tests, accepts, builds user

documentation and trains users
• IT developer : the one who designs, programs, tests Software
• Business Foundation Building Actor (sometimes called “Business Architect ”)
• IT Foundation Building Actor (sometimes called “IT Architect”)
• Support Foundation Actor : trains, coaches, checks Solution Actors

What works today:
Do Enterprises define Reusable Roles?
They all have defined Transformation Roles. But the list of Roles can be long (40 different
Transformation roles with one of our Sponsors), especially for those who have decomposed the
project process into many steps. It appears that number of Roles and number of Transformation
Tools are linked.

Second question is: “What is the consequence of Fou ndation on Role definition”
Consequence of Foundation on Project leader role:
Project leaders must take care of management tasks: they define plans, workload, budget,
resources, they follow advancement, manage exceptions and changes…
But when a Foundation is available they are also responsible for Reuse, which means they
must understand the Solution structure and functionalities offered by the Foundation. Their
responsibility is not only to manage the project but also to deliver a Solution which takes
advantage of Foundation.
In most Enterprises the Project Leader is simply managing the project. He or she does not Build
or check Solution Architecture. Many Project leaders we met are asking for training to be able to
play this new Role.

Consequence of Foundation on Business Architect rol e:
We noticed that the Role of the Business Architect was not uniform. We identified 2 key Roles:

08/10/2009
28

The “Business Map Architect”
Concentrates on Solution Map and group Solutions in domains and areas.
Aligns this Solution Map to Business Strategy.
Defines Business Architecture rules: how Solutions must interact through Interfaces...
Defines the 3 year plan, the budget and manages the project portfolio.
Does not enter into what are considered as details, is not involved in project. Does not
want to be considered as a super Business Analyst.
Does not Model Information and detailed Processes.
Does not care about Reuse. Does not care about SOA Functions, which are low level.

The “Business Builder Architect”
Plays the same Role but also Builds Solution Maps and Interfaces and check that
Solutions are consistent.
Is much more involved in details .
Masters Information and detailed Process Modeling.
Is involved in all Phases of Projects, checking that Architecture Rules are well applied,
Coaches Business Analysts.
Helps identify Reusable Functions and Repository Information.
Checks that Solution Architecture Reuses Components.

From what we observed, we think that the 2nd Role is more efficient in guaranteeing a
good Enterprise Architecture.
EA requires continuity between Business Architects, deliverables and projects. Maps
which describe present and future Solutions are useful for understanding EA, but do not
really contribute to Project success. Maps and Projects become desynchronized if they do
not use round trip tools: the risk is that Project Leaders directly coordinate without
Business Architect help.

New relations with sub-contractors
The Cooperative Approach requires new rules to subcontract developments because sub-contractors
must reuse Enterprise Foundation .
Note that there is a conflict if the sub-contractor decides to Build its own Foundation to be as efficient as
possible.
• the subcontractor’s teams must be trained, supported and coached by the Foundation team
• the delivered Solution must be checked : acceptance is not only based on delivered Functionalities,

but also on the quality of the Solution Architecture
• establish smaller contracts : one by version;

o Using the same Foundation helps the Enterprise to understand the Solution Model , even if
its development is sub-contracted: large parts of the Solution are implemented through
Foundation and Solution Architecture is implicitly defined by the Foundation.

o Foundation brings independence vis-à-vis sub-contractors and costs progressively
decrease as Foundation increases.

o the supplier can be the same for each version as it knows preceding versions, but it can also
be different if preceding supplier is not efficient enough

What works today
Most large Enterprises apply the Contractual Approach and not the Cooperative Approach.

4.2 Reusable IT Configuration for Transformation
Describes IT Configurations for Transformation teams: which work-stations, servers, and
communications.

4.3 Transformation Approach
The same Approach can be reused by the different Transformation teams who execute Projects.
It covers all Transformation activities, Solutions and Foundation:

• define problem

08/10/2009
29

• analyze
• design: Processes, Functions, Information
• program
• Build test cases and Test
• document for Operation Actors and Transformation Actors
• integrate
• accept
• deploy: train, install, reorganize.…

(see CEISAR White Paper on Agility)

What works today:
Do Enterprises reuse the same Approach, same Roles and same Tools?
All sponsors have defined an approach reusable by all Transformation teams.
Some Sponsors use different approaches for Business Analysis and IT Developments: cooperation
would be much more efficient if same Approach and same language were used for all intervening
parties. It means that the chosen Approach must avoid words not accessible to Business Actors.
Most Providers support a unique Approach. Some, like IBM, have defined several Approaches for
different sizes of projects: but for a given Project only one Approach is recommended.
Using this reusable approach brings high benefits such as:

• more security for planning and workload evaluation
• better traceability
• better communication between the different Actors

The same trend is observed with Providers. For example:
• IBM is announcing an end-to-end modeling methodology called “CBMSOMA”, that Provides a

roadmap for agility from strategy to execution. It combines Component Business Model™ (CBM),
Business Process Management Models and Service-Oriented Modeling and Architecture
(SOMA). This consistent approach links business strategy to processes and IT implementation.
The CBMSOMA method is delivered as an IBM engagement from its consulting bodies.

• Microsoft proposes SOM which provides an extensible and customizable modeling framework
including core business capability, process, service, and entity models to address specific
industry, organizational, and customer needs. SOM takes advantage of Microsoft Services
Business Architecture. SOM focuses business goals, priorities, and values and then properly
aligns them with the definition and implementation of services using a Common IT architecture
roadmap as defined by the Microsoft Service Oriented Architecture Maturity Model. With SOM,
modeling is no longer simply a tool for systems architects and developers. SOM is the bridging
technology that begins with key business drivers and ends in the development of agile software.
See : http://download.microsoft.com/download/f/8/5/f8503098-b1b9-455e-bcf6-
fbe3fcf9d3f4/Service_Oriented_Modeling_Datasheet.pdf

How to improve Approach and Roles to help Reuse: fr om Contractual Approach to Cooperative
Approach?
Present approaches are Contractual Approaches.
Sponsors are all thinking of improving their present approach. Let's present the main trends:

Looking for a Cooperative Approach
Their present Contractual Approach is based on a sequential process whose main item is the
“Contract” which defines all Requirements. It is adapted to Commodity Solutions (see White
Paper on Agility).
They now require a new Cooperative Approach (or Agile Approach) for Evolving Solutions. The
objective is not to complete the Solution in the first version, but get it to a point where a set of
capabilities can be tested and delivered to first users, and then to deliver other Versions at short
intervals allowing to progressively discover needs and solve the compromise between what is
desirable and what is possible: this Approach works better if a Foundation is available to
guarantee Solution Flexibility and extension.

Foundation means smaller Projects:

08/10/2009
30

Reusing same strong Foundation enables the breaking down of a large project into smaller
projects : consistency is achieved by using the same Foundation and not by full detailed design
of the large project before building it. First project can deliver Foundation V1 +Solution A. Second
Project can deliver Foundation V2 + Solution B; third Project can deliver Foundation V3 +
Solution C.
Solution B and Solution C do not need to be Modeled in the first project.

Governance to check usage of Foundations
As already described in the Governance white paper, Governance must check that Solution Builders do
Reuse Foundation.
The conformity check must be done before and not after Solution Project approval.
If Foundation is not suitable for a given Solution, the Project leader must provide proof : he or she
cannot ignore the Foundation which represents an investment made by the Enterprise.
Most advanced Enterprises have put this rule in place. But decentralized Enterprises have not.

4.4 Transformation Engineering Tools
4.4.1 Transformation tools are key

Transformation tools cover the full cycle: not only programming, but also specifications, Map modeling,
design, tests, integration…

Many Enterprises think that Transformation Tools are not so important : they all deliver about the same
overall productivity; or if they recognize some productivity difference, they consider that it just applies to
the Programming phase which represents 20% of the global cost and can be outsourced to countries
which offer low cost manpower.

Providers have a different view: they think that Tools have high consequences on Transformation
productivity. They try to offer a single Transformation Environment organized around a single Meta
Model, some also propose Business oriented tools:

• Google 's strategy is to provide end customers with a single set of consistent tools which they can
use internally. Google does not provide Business components. A list of main public Google
components may be found at http://code.google.com/more/#products-products-accounts

• IBM is converging towards a unique Meta Model and assembles its heterogeneous tools inside
the Eclipse Platform (which proposes only one tool for each need).

• Microsoft has made available to its client the professional tools that were used by its R&D
teams. Team Foundation Server has a track record of productivity improvement among many
enterprises (see http://msdn.microsoft.com/fr-fr/teamsystem/aa718811.aspx), especially when
used with Component frameworks like ACA.Net by Avanade. But Microsoft is aiming at even
more productivity with its Oslo project. The goal of "Oslo" is to provide a 10x productivity gain by
making model-driven applications mainstream with domain-specific models, a new language, and
tools. http://en.wikipedia.org/wiki/Oslo_(Microsoft)

• Oracle uses different Transformation Tools because many Providers have been bought and
ascending compatibility must be respected for existing customers. But long term strategy is to
converge towards a unique set of tools.

• Nucleus Research produced a report on Sales Force: using their consistent set of tools and
components divides deadlines by 5 and costs by 2.

• SAP considers that Development Tool based on the Java environment is useful for solving part of
their Transformation needs, but also use another Development Tool based on their own
Transformation language ABAP to address high volume and performance problems. Yet SAP
has decided to deliver a unique consistent set of Tools and Components, Netweaver, to
accelerate projects (http://www.sap.com/platform/netweaver/index.epx).

• Smaller players also offer solutions. To give some examples:
o Orchestra Network provides MDA tools to take control of master and reference data

across the enterprise (http://www.orchestranetworks.com/)

08/10/2009
31

o Softeam provides a modeling & generation support that covers the entire scope of the
Enterprise modeling (Business & IT) in a single tool, and can be adapted to the enterprise
application framework using MDA techniques (www.modeliosoft.com).

o Wyde provides a consistent suite of Tools based on a unique Meta Model
(http://tools.wyde.com/)

It means that Transformation tools can have a much greater impact on Transformation Productivity than
many people think: using integrated tools provides a much simpler environment with far fewer Roles.

From discussion with main Providers, we identified that the long term target was to provide Model
Driven Architecture (MDA): Model Business and it compiles!
The main idea is to define a way to represent Business Models: this is the Enterprise Meta Model which
covers all Models from Processes, to Business Entities, Reusable Functions, or Information Model.
Different views can be given based on the same Meta Model: the Business view or the Software view, on
Foundation or Solution, global or detailed.
Iterating between Business Model and executable Solution requires “round-trip ” tools based on this
same Meta-Model: modification in software automatically modifies the Meta Model and so automatically
modifies the Business Model view. Communication between the different tools is much easier to achieve
via a unique Meta Model than by Building interfaces between the Tools.
This round trip capacity helps iterations between the different phases: analysis, design, programming,
testing, integration: this is a very important feature of applying the Cooperative Approach (Agile
methodology).
There are sets of standards (UML2 for IT, BPMN for BPM) that are well recognized. The Problem is that
there does not exist a unique standard to define an Enterprise Meta Model (UML2 , EMS…). Each
Enterprise must make its own choice.

4.4.2 Powerful mechanisms which help Reuse
The quality and efficiency of a Building Foundation depends on Tools.
Many Components are only available if Transformation tools provide powerful mechanisms such as:

• Object Oriented approach: allows inheritance and polymorphism of Business Objects
• sophisticated relations help to modularize
• Business Entity access mechanisms: access to Business Objects rather than tables, mapping

tool between Objects and Tables
• Powerful Typing
• Business Transaction mechanism
• Process Patterns
• Versioning for Models and Instances
• capacity to Build Processes from Process elements by composition (Sub-Processes) or

inheritance (Process Patterns)
• integration of Rule engines
• multi language capacity
• Mechanisms to help Reuse
• independence with IT configuration models: OS, DBMS, Middleware
• consistency checking: to check if Foundation modifications are compatible with existing solutions
• impact analysis
• renaming: take care of not only Business Entity names but also Function names: experience

has shown that Function Name is not so easy to establish. Should be sufficiently explicit so that
Solution Builders understand what the Function does

4.4.3 External Rule Engine and Workflow Engine
Some Enterprises will have the opportunity to progressively rebuild their Solutions: as explained
previously, they should rebuild new Evolving Solutions based on a Building Foundation.
But other Enterprises have not this opportunity: so what can they do?

First step is to centralize Referentials and offer Access Functions to all Solutions as explained above.

08/10/2009
32

Second step: they can improve visibility and flexibility by extracting what often changes.
One way is to extract Rules (or Functions) which often change and implement them with an external
Rule Engine .
The Legacy system is adapted Rule by Rule: identify each Rule, replace its implementation in the legacy
system by a call to the Rule Engine, and implement the Rule in this Rule Engine.
Once investment is done, it does not increase Reuse: the Model is the same. But it becomes much
easier to identify Rules (visibility) and to manage these Rules without modifying the Legacy Solutions.
The downside is:

• overhead between the Legacy Solution and the Rule Engine may cause performance problems:
they must be solved

• when the number of Rules increases, a new complexity must be managed: the set of Rules and
their links with Legacy Systems.

Last step is to use an external Workflow Engine to chain Activities belonging to different Legacies.
It requires isolation of Activities or Functions inside each Legacy, addition of a new Transformation tool
(the workflow engine) and synchronized modification of Legacies and Workflow models.
But, once in place, it will enable creation of end to end Processes and will externalize changes in
Process Model without modifying the Legacy System.

4.4.4 What works today?
The existing portfolio of internal Solutions has been built and is maintained with different
Transformation tools : they may come from internal teams or external suppliers. Our Sponsors, which
are large international groups, use many different set of tools (one sponsor uses 8 sets of tools in France
alone: considerably more at the global level).
When a new Package is chosen, it imports its own Transformation tools.
It means that most large Enterprises have many Transformation tools.
To reduce this heterogeneity, at least for new internal Solutions, most Enterprises have defined a policy:
they recommend usage of a limited set of tools.
But it seems that the Transformation Environment is still very heterogeneous , much more than the
Operations Environment for which OS, DBMS, Middleware are much more standardized.

Most Enterprises still prefer to select “best of breed ” tools rather than a set of integrated Transformation
tools. It means that Actors are specialized by Tool:

• Designers use the Design tool,
• Programmers use the Programming environment
• Testers use the Test tools
• Integrators use Software configuration management tools
• Technical Architects use tuning tools
• Methodology Consultants use written procedures or specific tools
• Quality team uses design check tools or code check tools
• Managers use management tools
• …

Some Enterprises have begun looking at a limited set of consistent Engineering Tools based o n
same Meta Model rather than best of breed tools which must be interfaced and synchronized for each
change.
It is an opportunity for Transformation Actors to enlarge their roles: it reduces the number of roles.
Another advantage is that the Enterprise need not spend time selecting individual tools, checking
compatibility with others, installing them and controlling ascending compatibility each time a new version
is available for any tool.

4.5 Transformation Tools for Management
They help project management:
• Project repository and Project Portfolio management
• Project Planning
• Time Sheet and workload consolidation
• Evaluation Metrics

08/10/2009
33

• Exception tracking
• …
If Solution Engineering is weak , project requires a lot of management activities to compensate it:
coordinate, test, integrate, synchronize, document…
If Solution Engineering is good , project requires far fewer management activities. If Engineering tools
allow us:

• to reduce the number of Transformation Roles
• to organize Modeling around a unique Round Trip Meta Model
• to automatically check consistency of any update
• to organize repository of Components
• to automate part of testing activities
• …

then there is no need to manage what is already achieved by Engineering tools.
Our advice would be to first focus on Engineering tools to ensure good engineering and good
architecture of Solution, before defining Management tool requirements.

4.6 Information Model for Transformation
It describes

• reusable Management Information Models for Planning, project presentation, standard RFQ or
proposals, Metrics for evaluation of Projects …

• the Meta Model : all concepts such as Solution, Model, Functional Domain, Process, Business
Entity, Function, Rule, Relation, Attribute, Type… useful in order to Model an Enterprise. It
creates a Transformation language Reused by all parties

• Repository Model for Operation Foundations: how to store and version the different
Components Reusable by Solution Builders (see list in Operation Foundation)

What works today?
Repository Models have been defined but Enterprise Meta Model is not well formalized: our Sponsors
have not centralized a unique definition of what is: an Entity, a Process, an Activity, a Function, a
Solution, a Component, a Project…
This Transformation Meta Model could be defined when the time comes to choose a new set of
Transformation Tools

08/10/2009
34

5 Summary of what really works today

Page 16

Hardware Standards and OS Mechanisms

Reusable Processes:
composition and inheritance

Process Components

Business Functions

Technical Foundation

Core Foundation

Organization
Functions

Reusable UI
Elements

Exchange
Mechanisms

UI

Solution Structure

Reusable Solution
Models

(Package or Internal)
S

olution M
odel M

ap
HR

Solution
Accounting

Solution

Solution Models Built
with Components

Customized
Solution Model

Solution Models Built
with no Components

C
om

ponents

Specific-Business Functions

Cross-Business FunctionsSecurity
Functions

Type Functions

Information
Access Functions

Enterprise Foundation: what really works today

Exchange
Interfaces

Info.Access
Mechanisms

Workflow
Functions

UI
Mechanisms

This diagram summarizes what is currently implemented in most Enterprises (in green).
Most Enterprises have developed Exchange Foundation . Very few have a Building Foundation.
What works:

• Hardware and OS standards have been well defined by most Enterprises
• Information Access Mechanisms : DBMS standard usage but no Business Object access

Functions, no Business Transaction Mechanisms, versioning is not always managed
• Information Model : some Repositories are Shared like Customer File, Organization File. Very

few have defined a Business glossary. Some have defined a Entity-Relation Model for main
Business Entities.

• Exchange Mechanisms : most Enterprises have defined a standard middleware (EAI, Application
server…) and they widely Reuse it to allow Black Function calls between Solutions

• Exchange Interfaces : list of Interfaces between Solutions is generally documented; they are not
always up to date if tools are heterogeneous.

• UI mechanisms : mechanisms exist to build all kinds of user interfaces; but there are very few
mechanisms which allow management of Reusable UI elements like Type presentations,
inheritance of Windows, composition of UI elements

• UI elements Models: few Enterprises Reuse UI elements
• Type Functions do not really exist
• Organization Functions exist for Single Sign-on; Security Functions exist but there is not a

single Reusable Security Function; Workflow and To-Do Lists are not generalized
• Reusable Business Functions are not very numerous: difficulty in specifying them, difficulty in

splitting what is stable from what often changes; some Enterprises have started building SOA
Business Components.

• Processes are not Built with Process elements by composition or inheritance (process Patterns)
• Enterprises have Built or Bought Solution Models Reused by the different Companies of the

Group. This is mainly done for Commodity Solutions (no real competitive advantage, close
requirements between different Enterprises), particularly true in the industrial domain.

08/10/2009
35

• Enterprise Architects have developed Enterprise Maps to offer a global view of Entities,
Processes and Solutions. It helps to understand the Enterprise Architecture, and align future
Maps with enterprise Strategy. But :

o these Maps are generally designed with tools independent from tools to Build
Solutions : these Maps and the real world are not always synchronized

o Entity Map is almost never available
o Process Maps exist for Organized Processes, but do not exist for Business Processes :

these Maps are attached to organization and must be modified when Organization
changes.

08/10/2009
36

6 How to measure Foundation Value
To convince top management to invest in Foundation, measuring Foundation Value is a must.
The difficulty is that Value can only be checked after Foundation exists and has matured enough, while
investment decisions must be made beforehand.
This is why examples or case studies are very useful.
Agility, however, is difficult to monetize. Everyone wants agility, but few are willing to pay for it; in the
end, cost effectiveness is a much easier sell.

6.1 Value examples
We had difficulty in identifying case studies that provided proof that Reuse achieves high efficiency.
It is difficult for a Project Leader to propose 2 evaluations of his or her project: with or without
Foundations. People recognize that the cumulative Costs of Maintenance and Solution Evolution during
the 10 years which follow is less expensive with a Foundation than without, but no numbers are
available.

6.1.1 Air France
An SOA approach is currently in progress.
The objective is to simplify the Exchange Foundation by reducing the number of exchanges (or
“Services”) between Solutions from several thousands to several hundreds.
It becomes easier for Solution Builders to find Services in a reduced list; but each Interface is more
complex as it covers a larger perimeter. Total Modeling costs should decrease by several percent.

6.1.2 Imaging Solution
One of our Sponsors explained that 2 teams required an imaging Solution at the same time.
It appeared that the individual cost for each project was 1,440 man-days, which means that the total cost
was 2,880 man-days.
The cost of a Reusable Solution was 2,600 man-days + 150 man-days by project, which means that the
total for 2 projects was 2,900 man-days: exactly the same cost as for specific Solutions.
The decision was made to choose a Reusable Solution, because the marginal cost for future Projects is
much lower: 150 man-days instead of 1,440 man days.

This case seems obvious: governance is easy, the first 2 Projects pay for the Reusable Solution; no
investment is required from a Foundation team.
But very often, the same context does not induce the same decision: it happened because the following
conditions were met:

• somebody identified that the same need was emerging in 2 projects: it means that
communication had been organized between Solution Projects and Foundation team

• Project teams accepted to Reuse the same Imaging solution: management played its role
• A Foundation team was in place to take responsibility for the imaging Solution and to deliver it

not only to the 2 projects in question, but also to future projects.

6.1.3 Crédit du Nord
This example is interesting because it helps us to understand the long term Value of a Foundation.
In 1983 Crédit du Nord was a bank with low productivity.
It was decided by a new top management to increase Productivity by 30%.
Instead of analyzing all main Business Processes, it was decided to Build a powerful Foundation which
could allow implementation of any process optimization in a very short time.

The main Foundation elements were:

• Transformation Roles
o The Developer had to be able to understand requirements, design, program and test:

highly skilled developers
o creation of a unique Foundation team

08/10/2009
37

• Transformation Approach
o iterative
o minimum documentation and maximum prototyping

• Transformation Tools
o a single Development Environment for each of the 3 levels: local software, mainframe

software and server software
• Operation Roles

o Operation Actors were able to execute many more Activities than before: unique work
Station connected to all data bases and Solutions, standard user interface, data entry at
source, all checks executed on line: this is the main reason for productivity improvements

• Operation IT Infrastructure
o from 4 to 1 single mainframe server
o a unique Work Station (1983 is the year of announcement of the IBM PC in Europe) for

any role connected through LANs to the mainframe
o specialized channel servers
o automatic download of software modifications every week

• Information Access mechanisms and Functions
o a unique Business Entity model
o multi-enterprise mechanisms which later allowed to Operate other acquired banks
o standardized Types: name, date, amount-currency, enumerated type, text... (Year 2000

and Euro conversions were easier than for other banks)
o a unique Customer file
o Reusable Functions to access main Entities
o any Entry in the system was done through an Operation: unique identifier, tracking

information (who did it, when), ability to suspend any Operation, abandon it, or transfer it
• Solution Exchange mechanisms and Functions

o one synchronous and one asynchronous protocol for all needs
o conversion Functions based on Types

• UI Functions
o a unique user interface, a single desktop

• Organization Functions
o a single sign-on
o a generalized security Function
o generate message to internal Actors: to group all messages by target actor instead of

sending results by batch Solution
o generate edition to Customers: to put all documents in same envelop and save stamps

• Business Functions
o multi channel architecture: decomposition of Solution into Business Functions so that just

navigation and UI had to be customized
o office automation integration: text processing, spreadsheet and email systems were

integrated with same UI, same database, same software configuration management
• a simple Enterprise Solution Map

All Solutions have been progressively rebuilt based on this Foundation. They were developed with about
50% reuse rate: half of the previous effort.

The simplicity of the Enterprise Architecture enabled the following Results :

• drastically increased productivity: staff decreased from 10.300 people to 7.100 people; bank
became profitable

• number of customers increased from 600.000 to 920.000
• Time to market increased: 3 times the market share on new banking products
• Quality of Service is one of the best among French banks according to annual Customer Polls.

But what remains 26 years later?
The world has evolved:

• 5 successive CIOs managed the IS unit of Crédit du Nord

08/10/2009
38

• successive technologies emerged
• new Solutions were developed in the meantime

But Foundation is still very powerful and keeps the Enterprise Architecture simple.

Page 16

Crédit du Nord: 26 years later...

Solutions have evolved...

Technologies have evolved...

Foundation structure is still there!
•Business Entities/Identifiers
•Reusable Types
•Customer Repository
•Multi-Channel Solutions
•Multi-Enterprise Solutions

•Standard UI
•Integrated Office automation
•Unique Security Function
•Any Input = Operation
•Information reading Functions

•Reuse Customer message generation
•Reuse Internal message generation
•Unique Work Station
•A unique Mainframe
•A single Development Environment

6.1.4 Google
Google explains that its own internal productivity is based on its Foundation: Approach, Tools and
components.
Their Approach is based on:
• direct contact between the end user and the developer: there is no intermediary role. The Developer

must be able to understand End User requirements, design a Solution, develop it and test it. It
means that Google only hire highly skilled developers.

• small teams for each Solution: 5 to 10 people per team
• iterative process: first set of functionalities is delivered in first version, then following versions are

driven by end users
For those familiar with our last white paper, this really reflects the Cooperative Approach and not the
Contractual Approach.

6.1.5 Mobitel
Mobitel is a Mobile company from Slovenia.
They rebuilt most of their Enterprise Architecture with IBM.
They attained a 60% Reuse rate and accelerated “time to value” by 64%.

6.1.6 Sales Force
Nucleus conducted an analysis (document J29 of May 2009) of 17 Force.com projects and found
significant savings in time to development and ongoing support costs. Nucleus analyzed existing
Force.com application deployments and found that development was on average 4.9 times faster . End
customers, developers, and ISVs experience more rapid time to value, lower cost, and greater ongoing
flexibility.
http://nucleusresearch.com/research/notes-and-reports/force-dot-com-drives-faster-development/

6.1.7 Insurance Package
A software editor provides an Insurance Solution for all Product lines (Life, Property and Casualty,
Disability, Group Life, Health…), all Processes (CRM, Contract management, claims, billing, accounting,
business Intelligence…) and all Countries.

08/10/2009
39

To facilitate usage of Components by Solution Builders and decrease their workload, a powerful
structure of 40.000 Business and Technical components has been Built: Solution Builder just see
Interfaces of some Components, not implementations. Majority of Components are hidden.
The consequences of high Reuse is that the cost to Build a Model for a new Insurance Business Line is
about 5% of the total Foundation investment . The majority of the Model is in Foundation and no
longer in Solutions.
(see part 11 for more details)

6.1.8 Why does a Foundation Approach mean more complexity?
• Governance is more difficult: add

o Foundation governance
o Respect of Foundation by Solution teams

• Solutions become smaller if many Components are available, which means that the Foundation
is big . To simplify the job of Solution Builders a large part of the components must be hidden to
the Solution Builder, which means that the Foundation is a complex structure .

• The Solution Builders wants to use only what they need and not the superset of all needs of all
Solutions: Multi-Implementations must be provided by Foundation teams for some
Components.

• Ascending compatibility is necessary: how to guarantee that a new version of Foundation does
not require modification of Solution Models using previous versions?

• Solution Builders must know Foundation , which is not necessary if there were no Foundation.
They need training and support from the Foundation team.

6.1.9 Why does a Foundation Approach mean less complexity?
• Volume of Enterprise Model is globally reduced; to take an example: if Foundation allows us to

reduce each Solution Model to 1/3 of what it was before, then the global Enterprise Model is at
least divided by 2

• Each Solution is smaller: not only the Software size, but also the requirements; as a large part of
the Functions are already inside Foundations, size of requirements is reduced.

• It is simpler to understand each Solution Model.
• One indirect consequence of powerful Foundation is that each Solution Architecture is well

designed : it will be much easier to add features. It is well adapted to Cooperative Approach,
prototyping and iterations.

• Powerful Foundation hides Technical complexity to let Solution Builder concentrate on
Business Modeling: new versions of technical layers are only managed by the Foundation
team.

• Components are tested by its first “customers”. Once debugged, they do not need to be tested
again for future Solutions.

In the end, is it more complex or not?
We could summarize our vision this way:

• A bad Foundation is worse than no Foundation (see next chapter which defines rules to Build
good Foundation): bad Foundation kills the idea of Foundation

• If you get a good Foundation, then it reduces and structures the Enterprise Architecture, and
definitively simplifies it , which has a huge impact on Agility, Quality and Cost reduction.

• Foundation Reuse generates the quality of the Solution Architecture
o Main quality of a Solution is its modularity : a good modular Solution Architecture helps

understand the Solution Model, avoids propagation of errors and facilitates evolutions.
o Reusing Components automatically brings modularity and Solution Architecture

quality.
o As described above, Building Foundation adds White Components to Exchange

Foundation: modularity is even better, but there is a constraint in terms of Transformation
tools.

o This is why Reuse helps the analyzing, designing and developing new Solutions. It helps
Business Analysts who must analyze the Solution by Reusing Business Components and

08/10/2009
40

avoids having to define what is already embedded inside pre-Built Components like User
Interface, security, organization assignment...

Before detailing Value brought by Foundation, let’s tell a little story about an experiment done with one of
our sponsors (Total):
Total had defined global requirements for a Solution managing assignment of apartments to employees
having moved to France.
We asked 3 smart students, having never developed software before, to Build the Solution with an
available powerful Foundation.

• First, they succeeded in delivering the Solution.
• Second, it was done in 30 man-days, while the cost was supposed to be 90 days using a

Contractual Approach (classic Waterfall methodology).
It means that when strong Foundation hides technical complexity, Building Solutions can be done by non
expert people in a short time.

6.2 Main Value = Increased Agility and Reduced Cost s
Reduction of Complexity has an impact on agility, quality of service and costs.
It increases agility because Reusable Components represent a large part of the work: not only for
Solution Building but also for Solution evolutions.
It improves quality of service because Components are already tested and the Enterprise Architecture
is simpler.
It reduces costs :

• Transformation Costs, because Reusing Foundation can divide by 2 to 5 the cost of building
Solutions

• IT Operation Costs because standardization of IT infrastructure simplifies IT Operations
• but main savings come from Business Operations : User Interface standardization,

implementation of end to end Processes thanks to Interoperability components, reduction of
complexity, all contribute to productivity gains

Page 19

Building
Solutions

Building
Foundation

Business Operations

IT Operations

Transformation Operations

Reduce Costs

1st Saving:
group and optimize
Foundation teams

2nd Saving:
reuse Foundation
saves Solution
building costs

3rd Saving:
Standardized IT
Infrastructure

4th Saving:
Productivity gains by UI
standardization, Solution
connectivity, external User
Solutions...

6.3 How to convince top management
6.3.1 The 3 Scenarios

In April 2009, CEISAR carried out a survey in about 100 Enterprises.

08/10/2009
41

Question 1:
Powerful Foundation enables strong reduction (by half) of workload and timing? 79% answered “yes”
It means that Enterprises understand the value of Foundation.
But, creating a Foundation, using it, adapting the Approach represents a risk that no one wants to take,
as summarized in the following slide. To set this change in motion, Top Management must be convinced.

Page 20

Enterprise requires it,
but no Enterprise Actor is really willing to go...

No one
will take the risk

Top Management is not
willing to finance

Foundation:what ROI?

CIO life time is 3 years
on average: risk

taking is not the rule

Business Lines are
« specific »: why

Mutualize?

Transformation Actors
do not want to change

their Approach .

MACHIAVELLI (The Prince):
the one who wishes to

change a System must know
that the ones who benefited
from the old System will be
against him and the ones
who will benefit from the
new System will not help

him.

It is not in the interest
of Providers to

decrease workload.

We identified 3 main scenarios: Refuse, Wait and Go

Page 21

Scenario: Refuse

We do not believe in new
Approaches, Tools, Foundation

We have been
talking about
components
for 20 years:

does not work!

Packages will
solve our
problems

We had
difficulty in
generalizing
the present
Approach.

Each Business
Line has

specific needs:
no common

good

Too late:
existing

system is too
heavy.

Impossible to
prove ROI

No available
competencies.

We cannot
afford a major

change.

08/10/2009
42

Page 22

Scenario: Wait

Stay informed: explain that
we will do it one day, but

wait until:

Standards are
all defined

Competitors
have tried it

first

Top mgt is
interested in
Foundation

Business
Lines ask for
« Common

Good »

Project Teams
ask to change

Approach.

Less pressure
Crisis has

passed

Offer is well
developed:
Tools and

Foundation

CIO is less
defensive

More
resources

given to CIO

Page 23

CEO

Business Line Drs

Sherpa

CONVINCE INVEST CONQUER DEPLOY

Architects Pioneers Transformers

Scenario: Go

Explain:
•Earnings: time and costs
•Conditions: Foundation
Budget, Governance and
adapted Organizations
Prototype with existing
Foundation

Get a
Foundation:

«Make or Buy»

Start with
positive people
who accept risk

taking.

Progressively
generalize:
incremental
Approach

We will only focus on the last scenario to help Actors who launch such an approach.

Question 2:
Is it possible to convince your top management to invest in Foundation? 56% answered "yes"
It means that a slim majority thinks it is possible to convince top management. But how to go about it?

6.3.2 Difficulty in proving Value
Proving Foundation Value is difficult, just like proving that a car manufacturer must invest in reusable
parts to build new cars. It took 100 years to reach the present Reuse rate in the car industry.
The value of some Foundation items is easy to explain.
Examples:

08/10/2009
43

• people understand that it is impossible to merge IT Operations if no standardization of IT
Infrastructure is done

• people understand that it is difficult to exchange emails if different email formats and
mechanisms are used

• people understand that it is difficult to have a unique user identifier if there is not a Reusable
Solution to manage and store identifiers and passwords

• people understand that it is difficult to manage the Customer and not just the Contract if there is
not a Reusable Model for Customer

Explanation is necessary to persuade, but it also requires Sponsors , in particular a Business Sponsor.
As one of visited Enterprises explained, the Customer Repository became reality because the Marketing
director understood the Value of such a Repository and decided to finance the associated project. Today
80 Solutions reuse this Repository!

But most Foundation parts are not required by a Business Unit. How to justify investment in:

• reusable business glossary?
• reusable Functions?
• reusable Process Patterns?
• reusable UI elements?
• new Transformation Tools or a new Approach?
• …

Agility , is difficult to monetize. Everyone wants agility, but few are willing to pay for it; in the end, cost
effectiveness is a much easier sell.

6.3.3 Convince Top Management
An Enterprise is broken down into Business Lines.
Each Business Line is evaluated on its own performance: sales, profitability, productivity...: they are not
evaluated on their contribution to common good, they will never ask for Foundations.
Common Good is under the responsibility of Top Management and not Business Lines.
To enforce a Mutualization process, Top Management must be convinced. If you succeed in convincing
Top Management, they will define rules applied to all Business Lines which report to the Enterprise Top
Management.
Yet if Top Management is not convinced, do not drop Mutualization, do it at Business Line level , and if
Business Line Managers are not convinced, then apply it inside a large project : it will be less efficient
but success will allow a return later to upper levels.

This is a very difficult topic because Foundation is an abstract domain for Top Management, far from
concrete domains such as finance, marketing, sales, HR...
As Top Management is not really aware of Enterprise Architecture, Solution Map, Component Reuse...
the only way to convince top management is to align Foundation with Enterprise Strategy .

08/10/2009
44

Page 24

Solution Decisions
•Insert Solution in Solution Map
•Reuse Operation Foundation
•Reuse Transformation
Foundation

New EA Policy
•New Governance
•Budget to Build and Support
Foundation
•New Organization for
tranformation

Foundation Decisions
•Offer ans Support Operation
Foundation
•Offer and Support
Transformation Foundation

Enterprise challenges
•Reduce Complexity
•Develop Synergy
•Share Information
•Evolutive Solutions
•Standardize UI
•Open Solutions to External
Actors

Enterprise Goals
•Productivity
•Agility
•Service Quality
•Better Decisions

From Enterprise Goals
to Enterprise Architecture decisions

To convince Top Business and IT executives, the process should be:

• define what Foundation is in Business language
• Start from Enterprise Goals : Productivity, Agility, Quality, Cross-Selling, Mergers and

acquisitions
• Explain how difficult it is to achieve these Goals: identify the Challenges. …For example to

achieve the goal “higher productivity”, you must solve certain challenges “standardize usage of
Solutions”, “share Repositories”, “interconnect Solutions”, “reduce complexity”, “automate end to
end Processes”…

• Then explain how Solutions reusing Foundation solve these challenges: deduct a realistic
action plan (see after) and a related Budget for Foundation

• and propose EA decisions to be taken by the top management to obtain such Solutions and
Foundation:

o decide New Governance : ensure that Solutions Reuse Foundation, define indicators to
check Foundation efficiency (reuse rate, flexibility, modularity...)

o decide Budget to build/buy and support Foundation
o decide new Organization for Transformation: group into the Foundation team Business

and IT experts who take care of Common Good (Components, security, methodology, IT
architecture...)

This new policy is difficult to implement if the Group has a decentralized culture: Business Lines will not
easily understand that some of their decisions must be done in accordance to EA policy. It requires CEO
involvement and support for several years: this is a long term approach which will deliver progressive
benefits. If the Enterprise chooses to Buy and not Build Foundation, first results can be obtained faster:
first Solutions can be Built within a year , which is important to convince the internal Transformation
teams which generally represent the most important brake because the change effort is important for
them:

• change Transformation Approach: from Contractual Approach to Cooperative Approach
• change Organization: creation of a Foundation team, merging Business and IT Actors in same

Solution team
• change Transformation Tools
• learn what is available inside Foundation
• learn to not reinvent everything: Reuse what is already available inside Foundation
• accept a new Governance process which checks Foundation compliance
• …

08/10/2009
45

6.4 Define a Global Plan
The complexity of present Enterprise Architecture does not allow transformation of all Solutions at the
same time: it will be a long haul to progressively Transform the Enterprise.
• define the Target in a 10 page document

o How Target must contribute to reach Enterprise Goals : productivity, time to market, mergers
and acquisitions, new Business Lines, new Countries, cost reduction…

o Map of Solutions
� International Solution? Multi-Enterprise Solution?
� describe main exchanges
� priorities to renew Solutions

o Exchange and/or Building Foundation:
� all Solutions must interact: requires Exchange Foundations
� all future Evolving Solutions must be Built with same Transformation Model (same

Approach and same Tools): allows Building Foundation
� Some Commodity Solutions will be replaced by Packages

o Target Organization Structure
� Transformation and Operations are split in each Business Line
� Business and IT in same Transformation teams
� one Foundation team for the Group or one Foundation team for each Business Unit?

o Target Approach : Contractual or Cooperative Solutions
� impact on hiring

o Target Transformation Tools : only if Building Foundation
• Select the most important current Transformation Projects (2 to 5) still in the early stages
• Define what must be Reused among these different Projects, deduct Building Foundation version

1
• Create the team to Build and Support Foundation
• Carefully check that everything converges
• for other Solutions:

o do not disturb their present evolution: just inform Actors that new Adapters are provided by
the new Solutions

o however, when Solutions require big investment, decide if they should or not be built with the
Building Foundation, and check that they respect the Target: all of them will reuse the
Exchange Foundation

Page 25

Plan to Transform the Enterprise

Building Foundation

Exchange Foundation

New Solution
with Building
Foundation

Legacy Solution
reusesBlack
Function

Legacy Solution
proposes Black
Function

New Solution
with Building
Foundation

Solution
replaced by a
Package

time

Time 1 Time 2 Time 3

Sol A Sol B

Sol C Sol D

Define
Transformation
Tools and Approach

Define repository,
Middleware,and

Reused Information
Model

08/10/2009
46

The slide above is a simple example of such a plan:
• The Plan must include Foundation Plan and Solution Plan.
• it defines present Enterprise Architecture present status (at times1) made of 4 independent

Solutions
• it also define Enterprise Architecture target (at time 3) and intermediate step(s) (time 2) which

represent priorities.
• Exchange Foundation starts by defining middleware, repository and Reused Information Model:

then Exchange Functions will be progressively added
• Building Foundation starts by defining Transformation Tools and Approach: then its contents

increases progressively. If the Foundation is bought outside, Building Foundation is more
important from the beginning.

• at time 2:
o Solution B has been Transformed: it provides a Black Function available by other

Solution thanks to Exchanged Foundation, and Reuses a Black Function provided by
another Solutions: note that Exchanged Foundation allows progressive Transformation of
existing Solutions

o Solution D has been rebuilt using the Building Foundation: it also provide and Reuses
Black Functions

• At time 3:
o Solution A has been replaced by a Package: according to its openness, Black Functions

are provided (often exists) or Reused (not often allowed)
o Solution C has been rebuilt using the Building Foundation: it also provides Black

Functions

Foundation Plan depends on the Target:

• an Enterprise which mainly uses Commodity Solutions will require Exchange Foundation
• an Enterprise which increasingly uses Evolving Solutions will require Exchange Solution and

Building Foundation
• Having very different Business Lines which exchange almost nothing means that Exchange

Foundation will be reduced. But it does not prevent from Reusing the same Building
Foundation in the heterogeneous Business Lines. About 2/3 of a Building Foundation are
independent from the Business line: Technical and Cross-Business Foundations represent the
majority of Reusable Components (see exhibit on Insurance Package which gives precise
numbers)

Solution Plan depends on necessity to rebuild a Solution Model and on available Foundation. If
possible, start with Solutions which include Black Functions reusable by next Solutions; for example
Referential Solutions, then Core business Solutions, then Business Intelligence Solutions.

6.5 First step in obtaining Foundation budget is op timization of
current expenses

Group all teams which work for “common good” inside a single Foundation team:
• technical architecture team
• methodology team
• quality team
• Enterprise Architecture team
• SOA team
• development tool team
• security team

Merging these different teams enables optimization of resources.

We also suggest grouping all external expenses concerning “common good”:

• software expenses: they are often spread out among different Solution teams: many companies
pay for several design Tools, several accounting systems, several Business Intelligence
Solutions...

08/10/2009
47

• expenses for external experts: if you standardize tools and if you look for an integrated offer
rather than “best of breed” offers, you reduce these expenses

6.6 How to define investments on Foundation?
But optimization of current expenses is not sufficient to pay for Foundation.
A Foundation Approach is a long term Approach: it requires a long term budget.

It is difficult to establish a single formula which computes what a Foundation should cost because
Foundation can have distinct perimeters and timing according to Enterprise policy.
To help establish this budget we prefer to give some rules:

• Foundation budget must include not only Foundation Building but also Foundation Support :
training product, documentation, consulting, coaching, hot line…

• Foundation Building comes with documentation and training products
• do not ask the first pilot Solution team to pay for Foundation: they will have to deal with the

instability of first version of Foundation, they should rather be paid to be first Foundation users...
• Transformation teams should represent about 10% of the total Transformation staff
• Buying Foundation will be faster and cheaper if the external Foundation offer has the following

characteristics:
o at least 50% productivity gains for Solution Transformation
o allows customization : adapt proposed components without changing the overall

structure: it is useful if you want to change UI Functions, Security Functions
o allows extensions : Build new Components, particularly Business Components, or

Interfaces with other Solutions
o an integrated set of Transformation tools rather than “best of breed” products
o allows business extensions
o ascending compatibility: Solutions built with old versions of Foundation will run on new

versions with minimum effort
o produces Solutions which run on IT Operation standards (OS, Middleware, DBMS...)

“Buy Foundation” will always require customization and extensions
• Build/buy Foundation elements when a real Solution Builder is ready to use it, avoid building

useless Foundation.

We now propose some figures based on the following assumptions:

• staff includes Business and IT profiles
• Foundation is internally Built and supported
• with Business and technical Functions

Table to identify savings starting from a staff of 400 people in Transformation teams:

Reuse Savings 0% 20% 40% 60% 80%
Total

transformation
teams

400 355 295 235 175

Solution Team 400 320 240 160 80
Foundation team:

Building
0 20 40 60 80

Foundation team
Support

0 15 15 15 15

Table to identify % for Foundation teams

Transformation staff
(Business and IT)

130 240 565 1100 2160

 Solution Teams 100 200 500 1000 2000

08/10/2009
48

 Foundation Team 30 40 65 100 160
 Building 25 30 40 50 60
 Supporting (=5% of
Solution Team

5 10 25 50 100

% Foundation/Solution 30% 20% 13% 10% 8%

Support team size is proportional to number of people to support.
Building team is increasing with Solution team size, but is not proportional.
Cost for Foundation is easier to justify in large organization : % decreases with size.

08/10/2009
49

7 What is a good Foundation?
Let’s suppose that we have succeeded in convincing top management of the high value of Foundation.
We must now deliver this Foundation.
Many people have tried but failed to create Building Foundation: they were unable to achieve it inside
their organization because it is a difficult task. “Disappointment” was often transformed into
“impossibility”: I did not succeed because it cannot succeed. In the next section, we will discuss “how to
Build a good Foundation”

Many questions arise:

• small or large reusable Components?
• evolution of reusable Components: how to ensure ascending compatibility?
• how to build Reusable Components for several Enterprises...

7.1 Characteristics of a good Reusable Black Functi on
7.1.1 Split Interface and implementation

Open Group: “A building block's boundary and specification should be loosely coupled to its
implementation; i.e., it should be possible to realize a building block in several different ways without
impacting the boundary or specification of the building block. The way in which assets and capabilities
are assembled into building blocks will vary widely between individual architectures”.

A Function is divided into 2 parts: Interface (or “Signature”, “Contract”, “Specification”…) which
represents how to call it and Implementation , which does the work.
The same Function may have a single Interface (how to call it) and several Implementations for 2
reasons: different requirements and progressiveness over time.
Let’s take an example: the Reusable Security Function which checks that the current Actor can do what
he tries to execute.
Interface could include: input = Functional domain + Territory + Amount and output = Authorized or Not
authorized.
Different implementations can be successively Built:

1. Implementation which always answers “Authorized”
2. Implementation which just uses “Functional Domain”: the Actor is or not authorized to use

Contract Subscription Solutions, or HR Solutions…
3. Implementation which uses Functional Domain and Territory: the Actor is or not authorized to use

Contract Subscription Solutions in a Region
4. Implementation which uses Functional Domain, territory and amount; the actor is or not

authorized to use Contract Subscription Solutions, in a Region for an amount less than 10,000€.
These Implementations can be progressively Built according to Foundation team planning. But the
Solution Builder may use the definitive interface from the beginning. It will allow delivery of successive
Implementations without modifying Solution Models: Solutions just have to be re-tested
At a given point in time, some Solutions will be happy with Implementation 2 while others require
Implementation 4.
Solution Structure allows us to define which Implementation is chosen by a given Solution: just define it
once in the Solution Structure, and all Reusable Components used in the Solution Model will know which
Implementation to use.
This is not only true for security Function, but also for UI implementations, Desktop implementation, Multi
language implementation, and Error management implementation…

7.1.2 Versioning
As for Solutions, building Foundations means errors and iterations. It means that successive Versions of
a Black Function will be delivered. Function name must be completed by Version number.
If the Interface does not shift while implementation shifts, the caller Solutions need not be modified when
a new Version is delivered.
If the Interface changes we advise changing the Function name.

08/10/2009
50

7.1.3 Quality
Component Quality mainly depends on quality and experience of Foundation Architects, Foundation
rules and Transformation Tools.

7.1.4 Granularity
Actions may have different levels of granularity.
On one side of the chain we define a hierarchy of high level Business Processes such as:

• Transform the Enterprise
o execute the CRM Project

� define the Problem
� evaluate the Solution
� design Business Objects...

• Operate the Enterprise
o manage Customers
o Manage Life Insurance activity

� define Products
� subscribe a Contract
� manage a Claim

o Manage Staff
On the other end of the chain, we Model elementary Functions such as:

• acquire a Customer order
o capture Customer information

� Control Customer risk
o capture order lines

� enter product and quantity
� control availability

Which granularity to choose?

• small or large Function?
• do we limit Function reuse to automatic Actions executed by Computers or can we also deliver

Functions which require user interactions?

Our recommendations:

• large Functions are made of small Functions: do not hesitate to Build small Functions (equivalent
of one page of source code)

• offer high level Business Services, as “register a passenger” in an Airline company, or “sell a
complementary service” which require Human interactions and are not only question-answers as
in an SOA approach

• define Business Functions independent from Organization, so that changing an Organization only
requires assembling the same Business Functions in different Activities. It may impact on user
interface: each Function is associated to its user interface: presenting one window by Function
can be cumbersome for the end user: this is why it is sometimes necessary to redesign some
windows for higher productivity.

7.2 A structure and not a flat list of White Compon ents
The Business Function “Compute Price of the Health Product” could reuse different Functions:

• “Read conditions in Health Product”,
o with Health Product which inherits from “Insurance Product”

� with “Insurance Product” which inherits from “Product”
• “Read parameters in Contract”,
• “Read Information on Customer”
• “Ask information complements” through a user interface

o which in turn reuses UI patterns…
A Foundation is composed of thousands of embedded Functions.
They can be classified by layers, as we presented Operation Foundation in previous chapters.

08/10/2009
51

Page 26

Hardware standards and OS Mechanisms

Reusable Processes:
composition and inheritance

Operation Foundation

Process Components

Business Functions

Technical Foundation

Specific-Business Functions

Security
Functions

Information
Access Functions

Cross-Business Functions

Type Functions Core Foundation

Organization
Functions

Workflow
Functions

Reusable
UI elements

Exchange
Interfaces

UI
mechanisms

Exchange
mechanisms

Info.Access
mechanisms

Solution Structure

Reusable Solution
Models

(Package or Internal)

S
olution M

odel M
ap

HR
Solution

Accounting
Solution

Solution Models
Built with

Components

Customized
Package

Solution Models
Built with no
Components

C
om

ponent

Open Group: “Every organization must decide for itself what arrangement of building blocks works best
for it. A good choice of building blocks can lead to improvements in legacy system integration,
interoperability, and flexibility in the creation of new systems and applications”.
It means that there is no standard architecture of “Building Blocks”: each Enterprise must Build its
own .

Building White Components must be done from the base .
Building Black Components must be done from the top , starting from the “Client” request of the
Component: start form the Interface then develop the Implementation.

If you use Object Oriented Transformation tools and a Foundation of Business Classes, which is highly
recommended to facilitate reuse, systematically create a Class which inherits from each Business
Foundation Class even if no specific modification is required. It will allow you to add eventual specificities
in future versions.

7.3 Scalability and performance
In terms of performance, breakdown into several IT parts means:

• advantage: it is easy to identify which Function spends run time energy so as to concentrate on
their optimization

• disadvantage: multiplication of Functions produces an overload of calls to other Functions
Our experience is that Reuse requires tuning, but good performance has always been reached if the
following principles are applied:

• do not use middleware to call all Functions: you do not use middleware overload to call a simple
Function such as “Check Date validity”; select the Functions that really require middleware
because they can be executed on another server and use simpler mechanisms for local
Functions

• keep Object access mechanisms separate from their translation into relational data base access:
it will enable the building of several scenarios of mapping “Business Object to Tables” without
modifying Business Solution Model; Build your Business Solution once and Build mapping
scenarios several times

08/10/2009
52

7.4 Solution Reused for several Enterprises
Reusing the same Solution for several Companies inside a Group has many advantages:

• Total Transformation cost decreases
• Same processes can be deployed
• Information is consistent

Maintained Solutions are Reusable if they can be Customized: Reuse will increase with Customization
ability.
Let’s take an example: each HR Unit of each Company of a Group Operates using the same HR Model
provided by the Group

• No customization : each Company Reuses the Source solution Model as it is; if new Versions
are delivered to Companies, they include tools to Migrate Information if necessary. The Source
Model is not Modified; different instances of this Model can be Operated with different Actors and
different Data Bases

• Configuration : parameters, rule engine and workflow engine allow modifications which do not
change the Software part: this is the most common way provided by most Package Suppliers. Ex:

o “change language”
o “change tax Rules” thanks to Rule Engine at the right place in the Model,
o add dynamic Attributes such as “subscribe or not to a retirement plan” (which has value

only in some countries)
o assign Activities to Actors according to the Organization chosen by each Company,

thanks to the Workflow Engine
Configuration Information must be isolated from Source Model so that new versions are easy
to deploy.

• Extension : inheritance allows specializing of Business Classes; separation of original Solution
Model and Customized part can be maintained independently: ascending compatibility is easier.
For example, “Company 1 Employee Class” is inherited from “Source Employee Class” which
allows addition of Attributes or Functions. Nevertheless, new Solution Versions are more difficult
to integrate than with simple Configuration: tools should be delivered by the Provider to help
Information Migration.

• Bootstrap : each Company gets the Source HR Model and diverges: no maintenance is required
from Source Provider (Package Provider or Group Provider)

Page 27

Source Solution

Modification of the source
Model

Source Solution

Source Solution

Source Solution

Customization of Solutions

No Model Modification

Configuration

Extension

Bootstrap (or divergence)

Customization by Parameters,
Rule Engine, Workflow Engine,
Dynamic Attributes

Customization by add-ons:
inheritance

Recommendations to Build/Buy Solutions Reusable by several enterprises:
• explain that Reusing same Model does not mean that each Enterprise loses its specificities

08/10/2009
53

• Information modification : if some Attributes have to be added for an Enterprise or if some Types
must be adapted, use inheritance

• Rule adaptations : if using a Rule engine, do not forget “Enterprise id” as one of the parameters of
each Rule

• isolate Organization Modeling from Business Modeling: Activity assignment must be externalized
by Workflow Engine; different Organizations are supported by the same Business Model

• Interfaces to existing Solutions: same Interface with different implementations

7.5 Foundation Reused for several Enterprises
The same Foundation may be reused by different Enterprises: it happens if an Enterprise buys external
Foundation, or if a Group of several Companies Builds a common Foundation. Each Enterprise must
then adapt the Foundation.

Recommendations:
• language : rather than redesigning all screens or printouts, favor a mechanism which asks for a

translation dictionary and automatically produces updated windows; it is then possible to update the
windows which require adaptations (for example, because translated fields are longer than before);
this approach enables us to only translate a dictionary of terms. Changing language applies not only
to different Countries, it also applies to Companies from the same country which use different
business wordings: “Contract” or “Policy”? “Customer” or “Member”?

• Information ownership : for all Business Objects which could be owned by each Enterprise (like a
Customer file or a Contract file): check identifier structure

7.6 Add Specific Functions to Foundation
Solution Builders may Model a new specific Function which could be Reused by other Solutions.
Recommendations:

• Do not let Solution Builder directly distribute its Reusable Functions to other Solution Builders: it
must be delivered by the Foundation team

• Before delivering this Function, the Foundation team must:
o check that its design fits with Foundation standards: multi Enterprise Function, reuses

other Functions…
o prepare Documentation and training products

• Maintenance of this Function must be done by the Foundation team and not the Solution team
which first Built it, so that each Solution team only has one provider: the Foundation team

• At the end of each Solution project, identify which specific Functions could be Reused.

7.7 Enterprise Model and detailed Model
Some Enterprises oppose Enterprise Model and detailed Model.
Enterprise Model represents an overall view of Processes, Business Entities or Solutions, through
Maps at different periods: the gap between Maps helps to define long term evolutions.
Detailed Models represent the detailed Actions, information and Actors through Models and Software.
The difficulty arises from the discontinuity between the 2 worlds. If they are not updated at the same time
divergences may appear: Solution Builders do not use Enterprise Maps because interfaces between
Solutions have evolved.
The best situation would be to have a unique Meta Model which offers different visions (global and
detailed) according to each Actor requirement.

08/10/2009
54

8 How to get a Good Foundation: Success Factors
Efforts to Build Foundation depend on different factors:

• Exchange or Building Foundation?
• Quality of Transformation Tools
• Resources: Quality and experience of Foundation Architects and Budget
• Customer pressure

One way to accelerate Foundation availability is to buy external Foundation: what recommendations can
be made?
Between a full Foundation now and no foundation at all, there may exist different levels. It is possible to
start Building Foundation in small steps:

• group all teams working for common good into one Foundation team
• define a Business Glossary, and a Business Entity Model
• define a single Middleware
• implement the Cooperative approach on some evolutive project
• experiment with some modern Transformation Environments
• ...

8.1 Foundation effort is not the same for Exchange and Building
Foundation

Page 28

Transformation Tools+IT Configuration

IT Configuration for Operations

Enterprise Models

Reusable Solution Models

Access Functions to Information

Exchange Functions between Solutions

Business Functions

Organization Functions

User Interface Components

Functions related to Types

Process elements

Reusable Foundation

Transformation Approach + Roles

Exchange and Building Foundations

Solution Configuration

Necessary for Exchange
Foundation

(Interoperability only)

What must be added
for Building Foundation

(Reuse)

Black and white
surfaces represent the

relative efforts for
Exchange and Building

Foundations.

• if an Enterprise decides on an Exchange Foundation, the Foundation team must Model the black
rectangles which allow interoperability between Solutions

• if an Enterprise decides on a Building Foundation, the Foundation team must Model the white
rectangles with same Transformation Tools

Let’s comment on each line:

Transformation Tools + IT Configuration for Transfo rmation
If an Exchange Foundation is applied, each Solution team may define its own Transformation Tools and
IT configuration for Transformation: the Foundation team has no recommendations.

08/10/2009
55

If a Building Foundation is applied, the Foundation team must decide on a set of transformation Tools
and define the adapted IT Configuration for Transformation.

Transformation Approach and Roles
If an Exchange Foundation is applied, the Foundation team must define part of the Approach so that
Built Solutions intercommunicate:

• Solution Team must Reuse the Information Model (Entity Definitions, Relations, Attributes and
Types)

• Solution teams must Reuse Business and Organization Functions
If a Building Foundation is applied, the Foundation team must define a more detailed Transformation
Approach which favors Reuse of White Components (user interface components, inheritance of
Business Objects, Type Functions, Process Patterns) and takes advantage of the Transformation Tools
(iterative approach, test tools, documentation tools, integration tools...)

IT Configuration for Operations
If an Exchange Foundation is applied, each Solution may choose its own Operation IT Configuration: the
only constraint is that all Solutions which intercommunicate must Reuse the same Middleware.
If a Building Foundation is applied, IT Configuration for Operations is constrained by what generates the
Transformation tools. Some sets of Transformation tools allow generation of Models which Operate on
different IT Configurations.

User Interface Components
If an Exchange Foundation is applied, User Interface look and feel standards can be documented , so
that Solutions usage is consistent. But standards are not always applicable: they are constrained by
Transformation Tools or by the Package provider.
If a Building Foundation is applied, User Interface is Built Reusing same UI Components (Windows
pieces, window inheritance, Type presentation, navigation patterns...): standards are easier to apply.

Access Functions to Information
If an Exchange Foundation is applied, it is possible to Build Reusable Mechanisms to access Information
belonging to another Solution. This Mechanism Reuses same middleware.
If a Building Foundation is applied, many other mechanisms can be Reused: Business Object access
rather than Table access, identifier generation, versioning, dynamic Attributes, navigation through
Relations, Business Transactions, replication Functions...

Exchange Functions between Solutions
If an Exchange Foundation is applied, exchanges between Solutions must be well defined. It enables a
first level of Reuse through Black Functions to access Information, update Information, receive flows
from input Solutions or feed output Solutions.
If a Building Foundation is applied nothing more is required, except to facilitate Solution Projects by
providing an Exchange Function repository integrated with the set of common Transformation Tools.

Functions related to Types
If an Exchange Foundation is applied, no work is required.
If a Building Foundation is applied, provide Reusable Functions related to Types:

• Reusable Types for Date, Time, Currency, Zip Code...
• all Attributes which Reuse “Text Type” benefit from text editing Functions,
• all Attributes which Reuse “Hierarchy Type” benefit from tree Functions,
• all Attributes which Reuse “Table Type” benefit from table manipulation Functions,
• ...

Organization Functions
If an Exchange Foundation is applied, Authentication and Security Functions can be Reused as Black
Functions.
If a Building Foundation is applied, Workflow Functions can be proposed to dynamically assign Activities
to the right User.

08/10/2009
56

Business Functions
If an Exchange Foundation is applied, Black Business Functions are proposed by the Foundation team:
Compute price, generate accounting entries...
If a Building Foundation is applied, White Business Functions are proposed to Build Business Functions
by inheritance.

Process elements
If an Exchange Foundation is applied, exchange mechanisms can be used to launch Process elements
which are modeled in different Solutions.
If a Building Foundation is applied, Process Patterns can be Built by the Foundation team to facilitate
Process Modeling when Processes resemble each other.

Reusable Solution Models
If an Exchange Foundation is applied, Foundation Team may propose Solution Models which are
Reused by different Enterprises. These Solutions interact with other Solutions.
If a Building Foundation is applied, nothing more is necessary.

Enterprise Models
If an Exchange Foundation is applied, Foundation team Builds Process Maps, Entity maps, Solution
Maps
If a Building Foundation is applied, add Maps of Reusable White components.

Exchange Foundation can be a first step. It is simpler and already delivers good Value (see above).
Building Foundation can be progressively Built and applied, according to opportunities: each time a new
Solution Model has to be Built, it creates requirements for new Transformation Tools and White
Components.

8.2 The difficulty of creating Building Foundation
Creating Building Foundation is a long and difficult task.
The example of a single Insurance Package for all Business Lines and all Countries described in the last
chapter, is a good example of the ability to Build Solutions based on powerful Building Foundation: a
new Business Line Model represents only 5% of the Building Foundation Model!
But you cannot reach that level of Reuse in one step. The key difficulty is abstraction: how to discover
what is common among Business Models which look so different?
When Business Operation Actors present their activities, they always focus on what is specific to their
Business Domain, they never present what is common to other Business Domains. The task of the
Transformation Actors is to progressively discover what can be Mutualized.
The Building Foundation Model is broken down into different layers, from Technical Components to
Business Components.
Start with technical components to progressively ascend in Business layers, because upper layers
Reuse lower layers: you need to understand Functions and mechanisms offered by lower layers to
properly design a new layer:

• Model Types before Modeling Reusable Access Functions
• Model Reusable Access Functions before Modeling Cross-Business Functions
• Model Cross-Business Functions before Modeling Specific Business Functions

The market offer is growing: it will allow Enterprises to base their Building Foundation on pre-Built layers.
Be careful to select a Building Foundation offer:

• which works efficiently: best way is to Build a real Prototype of Solution
• which is customizable
• which is easy to use for Solution Builders
• which manages ascending compatibility: Solutions Models should not be modified when a new

version of Building Foundation is available

The last criterion is the most important, but it is difficult to achieve in first versions when the Model is not
yet stabilized.

08/10/2009
57

Some Enterprises use copy/paste in first versions: the Solution Modeler copies the Building Foundation
and diverges. It saves time and money for first version of Solution Model, but does not take advantage of
future versions of Foundation: full maintenance is carried out by the Solution Modeler.

8.3 Which Transformation Tools to help Reuse?
Building and reusing a Building Foundation requires Transformation Tools.
Many White Components described above are only feasible if Tools are powerful enough :
inheritance, rich typing, versioning…

8.3.1 Powerful features
The Tool features which help Foundation are the following:

• a single Meta Model which represents Business and IT Models for Solutions and Foundation
• Versioning to identify successive elements of Foundation and facilitate ascending compatibility:

comes with automatic comparisons between different Versions of Models
• Sophisticated Relations : Relations between Business Entities must be defined as “simple or

multiple”, “owner or not”, “versioned or not”, “both sides or not”: the sophistication of relations
allows us to connect Foundation Entities and Solution Entities

• Object oriented features to Build White Components (inheritance and polymorphism); also
useful for User Interface: Windows inheritance and polymorphism

• Powerful Typing to help Build type Functions
• Integrated Rule Engine : to allow isolation of what often changes
• Integrated Workflow Engine to Reuse same Business Process in different Organizations
• Persistency engine for Business Entities using standard functions from DBMS, to Build

Business Functions
• Straightforward incorporation of external components
• Work Group features to allow Solution teams and Foundation team to work in parallel and

synchronize easily
• Software configuration manager able to manage thousands of small Functions related to each

other
• Component Repository to store Foundation elements
• This set of tools must permanently check Model consistency: impossible to delete a piece of

Information if this Information is used by any Model; impossible to change a Function Interface if
old Interface is still in use: helps to manage evolutions of Foundation and obtain impact
analysis…

8.3.2 Represent different granularities
The tool must represent a Solution or a Foundation.
It also must represent an Enterprise Model made of Different Solutions and one Foundation.
This can be done at Group or Company level (check vocabulary)

8.3.3 The Meta Model
A tool is based on Concepts like “Business Entity”, “Process”, “Function”, “Actor”, “Event”, “Block”,
“Class”, “Service” …
The definition of each Concept and their relation to each other is defined by the Meta Model.
Each Enterprise uses its own Meta Model.
Normalization standards bodies (like UML, Process Management, …) define concepts, sometimes too
many.
Our first goal was to define a basic Meta Model which fits different companies.
Working with CEISAR sponsors (Air France, Axa, BNPP, Michelin and Total), helped to define a
common Meta Model.
This Meta Model is essential for creating Foundation and Solutions: as the reader may have noticed,
Reuse of the same words “Solution”, “Foundation”, “Function”, “Business Entity”, ‘Business Process”,
“Organization Process”… is necessary to explaining Foundation.
Even if you use other terminology (such as “Black Function” for “Service”, or “Solution” for “Application”),
you still need to use a Meta Model for a successful Foundation Approach.

08/10/2009
58

Page 29

How to design Processes

ORGANIZATION MODEL IT MODELBUSINESS MODEL

Business
Entity1

Business
Function5

Business
Process

2

Organized
Process

3

Entity Class
>1

IT Function
(Soft.Service)

Activity
Class

>5

>4

Organization
Function

Organization
Entity

•Find next Actor
•Authorize

1

Organization
Process

Class>3

Activity
4

5

Scenario 1

Actor
Entity

•Compute Price
•Check inventory
•Update account

Sort functions
by Entity
Assign Function

to Entity

Become
Reusable
Functions

They are reusable
Functions

Process
Orchestration

Let's summarize what was described in former white papers:

• a Business Entity is a representation of a real Business Object: a Contract, a Product, a
Customer

• a Business Process is broken down into Business Functions : it describes successive Actions
necessary to execute the Process independently of the chosen Organization.

• Processes are structured in a hierarchy of Process Domains
• Business Functions are grouped by Business Entity
• for each Organization scenario, one Organization Process is defined: for the same Business

Process there may exist several Organization Processes
• Each Organization Process is split into Activities : an Activity is a set of Business Functions

which are always executed together by the same Actor (Person or Computer) at the same time
• Organization Functions are added to each Activity: security, workflow, To-Do list Functions are

not defined at Business Process level
• Organization Functions are grouped by Organization Entity
• Organization Processes, Activities, Functions and Entities are all related to IT Classes which

implement the associated software

Some comments on the Meta Model:

• There is just one Meta Model for Organization designers, Enterprise Architects or Software
Developers.

• This is a round trip Meta Model: when a change is made by a Transformation Actor (ex:
Business Analyst, Developer), the Meta Model views of all concerned should automatically
change.

• Consistency rules : any modification in the Model must be checked by strong consistency rules.
• Use Standards when they exist (UML, BPMN, …)
• A glossary of terms must be defined before the Meta Model itself. As a concept is defined thanks

to other concepts, check that its definition covers what is required.
• “Action” can be specialized in many different concepts like “Business Process”, “”Organization

Process”, “Process Domain”, “Activity”, “Procedure”, “Operation”, “use case”, “task”, … We have
defined a middle position: each Enterprise should be allowed to extend the Meta Model if
necessary.

• If one standard Meta Model becomes well recognized, in the future Models will become
exchangeable: exchange formats must be defined based on the Meta Model, and tools must

08/10/2009
59

accept input and output of these exchanges.
Any Meta Model concept must be defined at least through:

o Inheritance
o id, version, name, text description
o relation with other concepts.

• Generators
o A Meta Model comes with a documentation generator: enables extraction of that part of

the Meta Model adapted to each role. Generation should be automatic and produced on
different formats (word, HTML, XML, …)

o It must be also possible to generate other outputs like: Processes (BPML), code, data
model

8.3.4 Cloud Computing: an opportunity to integrate Transformation Tools
Wikipedia definition:
“ Cloud computing is a style of computing in which dynamically scalable and often virtualized resources
are provided as a service over the Internet. Users need not have knowledge of, expertise in, or control
over the technology infrastructure in the "cloud" that supports them.[3]
The concept generally incorporates combinations of the following:

• infrastructure as a service (IaaS)
• platform as a service (PaaS)
• software as a service (SaaS)

Cloud computing services often provide common business applications online that are accessed from a
web browser, while the software and data are stored on the servers.”

Cloud computing offers Operation and Transformation Services.

Cloud Operation Services facilitate Enterprise Operations:

• no hardware to manage
• no network (except internet access)
• no scalability plan
• no IT Operation Software to install or upgrade on servers or work stations: just keep a Web

Browser
• few Operation staff to save/restore Information, manage changes, launch batches

One remaining question is how to solve security problems: access, information ownership.

Cloud Transformation Services facilitate Enterprise Transformation: Operation advantages can easily
be translated into Transformation advantages. The main benefit is that Cloud Computing can offer a
pre-integrated set of Transformation tools and reus able Components . The Enterprise which
chooses to Build Solutions based on Cloud Computing, still has to Build its own Business Foundation,
but it will find a Transformation Foundation which will make life easier.

Salesforce.com began as a monolithic SaaS Solution. However, its fundamental Functions, useful and
reusable across a wide range of custom Solutions, have been teased out and made available in the
company’s Force.com offering.
Arguably, even Amazon, the pioneer of cloud computing, began as a monolithic web Solution selling
books. It then followed up with granular Functions that plug into its core, and finally provided the basic
building blocks of their Solution—queuing, database, storage, elastic computing—as Functions for hire.
This is SOA evolving into cloud computing.

8.4 Quality and experience of Foundation architects
Building Foundation is more difficult than Building Solutions because

• there exist several Customers for Foundation
• it is a 3 level Structure (Solution based on Foundation based on technical layer) and not a 2 level

structure (Solution based on technical layer)
It means that a large part of the best Architects must join the Foundation team.

08/10/2009
60

Required qualities : abstraction, structure, capacity to identify common parts in different specific
Solutions, communication, pedagogy
Experienced Architects : the learning curve is long. It takes time to understand a structure of
Components, to simplify Function interfaces, to Build Components with other Components. Hire
experienced Architects if you want to avoid the usual pitfalls.

8.5 Foundation Customer is required
Foundation should be built before Solutions as Solutions Reuse Foundation.
But good Foundation is Built from its Customer, the Solution Builders' requirements: this avoids the
Building of useless or over-complex Functions. Yet this means that Foundation is actually Built after
Solutions. This in turn means iterations: thus a Foundation is progressively Built; successive versions are
delivered to Solution Builders. It is a long process.
Black Components are Built starting from Business requirements.
Ex: find interface for the Function “am I authorized?”.
White Components are Built starting from Technical Functions, ending with Business Functions. We
need to start with Types, Information Model, and go up in layers as described above. White Components
are defined by Builders who progressively discover how to break down Solutions into Reusable pieces.
The only way to shorten this process is to buy an external Foundation and Customize it.

8.6 What Organization is most efficient for Foundat ion?
If a Group is broken down into Business Units, an efficient target could be to isolate the Foundation team
and merge Business and IT Modelers into the same teams.

Rule 1 : each Business Unit splits Operations and Transformation
Operation Actors produce, sell, administer according to the Operation Model. They represent the
majority of Actors. They generate the Enterprise Revenue.
Transformation Actors Build the future Operation Model or Modify the existing one. They design new
Products or new Processes, define Procedures, develop the associated Software, train people and
deploy.
If you mix Operations and Transformation, Operations is always a priority and reduces Transformation
efforts.
It does not mean that Operation Actors are not involved in transformation: the Sponsor of a Project is an
Operation manager; but it means that Building a Model demands different talents than those necessary
for Operations.

Rule 2: Each Transformation team includes Business and IT people
The Contractual Approach is adapted to commodity Solutions: but evolving Solutions require a
Cooperative Approach which requires that Business and IT Modelers be merged in the same project
team to decide the best compromise between business hopes and IT possibilities. It is not “IT slaves,
build a Solution to support all my Business requirements”, it is “Together, let’s define a first Version of a
Solution which delivers useful Functionalities at a low price and which can accept future add-ons”.

Rule 3: a Foundation team is created at Group level which works for all Business Units
To guarantee that all decisions on Foundation are consistent, the Foundation team is unique. It includes
all teams which work for Reusable Models such as “Technical Architecture Team”, “SOA team”,
“Security team”, “Quality Team”, “Transformation Tool team”, “Ergonomics team”, “Process team”,…
As for Foundation team, the Foundation team owns Business and IT Actors.

Rule 4: the Foundation team includes a “Support Tea m”
Building a good Foundation is not enough: Foundation must also be supported.
A Solution Team often requires help (training, coaching, checking) from the Foundation team: to facilitate
relationships, the Foundation team is composed of a Building team and a Support team. The Support
team will solve the majority of requests from Solution teams. If they cannot answer a question, they ask
the expert of the Building team to solve the problem.

08/10/2009
61

The Solution team is considered as a client of the Foundation team which must act as a software editor.
A good way is to assign one Support Architect to each Solution Project: their role is to coordinate all
actions to help the Solution Team.

With this scenario, the traditional IS department is shared in 3 ways:

• IT Operations joins Operations
• Foundation joins the Group level
• each Business Unit owns its Transformation team

Page 30

Business
Transformation

1

Business
Operations

1

IT
Transformation

1

IT
Operations

1

New Organization

Business
Foundations

IT
Foundations

Foundations

Line 1
Transformation

Line 1
Operations

Business
Transformation

2

Business
Operations

2

IT
Transformation

2

IT
Operations

2

Line 2

Line 2
Transformation

Line 2
Operations

•Adapted to Groups where synergy
exists between Business Lines.
•Top management is involved in
Foundations.
•The best balance between synergy and
decentralization
•Only efficient if: quality of
Foundations, support team for
foundations and adapted Governance

Can be executed by a
single IT Operation Unit
Can be executed by a
single IT Operation Unit

Line 1

They Build Solution
Models for Line 1

Exchange Foundation:
Black Functions are Built by Solution Builders The role of the Foundation team is light : define the
Reusable Information Model, define exchange Mechanisms, manage Black Function repository for all.

Building Foundation
White Functions are Built by the Foundation team; the role and the size of the Foundation team is much
more important which is largely compensated by a decrease in size of Solution teams. Foundation team
may become bigger than Solution teams.

08/10/2009
62

8.7 Planning for a Foundation approach
8.7.1 A determined approach for Exchange + Building Foundation

Page 31

An Exchange and Building
Foundation Planning

Transformation
Approach

•Governance V1
•Foundation Building
Rules
•Cooperative Approach
•Teams and Roles

Transformation
Tools and White

components

IT Operation
Configuration

Information
Model

•Business
glossary
•Entity Relation
Model
•Types

Information
Access

Functions

UI
Functions

Business
Functions

Organization
Functions

Enterprise
Model

•Process Model
•Solution Model

Process
Elements

Get Informed
•Visit Enterprise
•Visit Providers

Build 1 st Meta
Model

Build 1 st

Business
Glossary

ConvinceTop
Management

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Solution
Structure

If there is a desire to genuinely make large investments in Foundation, the Process could be the
following:

First Step is to:

• Choose or define the Enterprise Meta Model V1
• merge all teams working for common good into a single Foundation Team and split the

Foundation team into: Building and Support
• document what already exists in Foundation
• develop a Business Glossary and start working on a Reusable Information Model
• visit Enterprises and Providers which have already developed a Foundation approach:

understand the value they get, the efforts they made, the planning they followed
• get informed on Transformation Tools and Approaches which deliver high productivity
• prepare arguments and convince Top Management to invest in Foundation

Second step is to define:
• Transformation Approach

o Governance requires defining how to check that Solution Builders reuse Foundation and
how decisions for Foundation are made: a global approach

o Foundation Building Rules include: Granularity, naming conventions, versioning,
ascending compatibility, ownership

o Cooperative Approach for Solutions, rather than Contractual approach
o Teams and Roles for

� Sponsors
� Foundation Builders: Business and IT
� Foundation Support
� Solution Builder: Business and IT

• Transformation tools which support the Approach: this is the first engineering decision because
it is impossible to start Building without tools. Define the list of criteria and check with other
Enterprises using same tools. Once Transformation tools are defined, start Building White
Components .

• and target IT Operation configuration (OS, DBMS, Middleware) which must be supported by
Transformation tools

08/10/2009
63

Third step is to Build

• Enterprise Model : Process Map, Solution Map
• Information Model : Glossary of Entities, Entity Map, Relations, Attributes and Types

Fourth step is to Build Information Access Functions : Business Object access rather than simple
table access, versioning, mapping Entity/tables, Transaction mechanisms…

Fifth step is to progressively Build Business and Organization Functions which reuse Information
Access Functions and White Components: inheritance of Entities, reusable Types, patterns for desktop,
processes, skeleton for Software Services…

Last step is to Build Process elements : Process Patterns or Sub Processes which can be reused when
Building Processes.

8.7.2 A determined approach for Exchange Foundation only

Page 32

Transformation
Approach

•Governance V1
•Foundation Building
Rules
•Cooperative Approach
•Teams and Roles

Transformation
Tools

IT Operation
Configuration

Information
Access

Functions

UI
Functions

Business
Functions

Organization
Functions

Process
Elements

Get Informed
•Visit Enterprise
•Visit Providers

Build 1 st Meta
Model

Build 1 st

Business
Glossary

ConvinceTop
Management

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

An Exchange Foundation Planning

Restricted to
Reuse of Black

Functions

Only for
Repository of

Black Functions

Only for Information
exchanged between

Solutions

Only for Business
Functions exchanged

between Solutions

Only for Organization
Functions exchanged

between Solutions

No Process
Patterns

Information
Model

•Business
glossary
•Entity Relation
Model
•Types

Solution
Structure

Only for
Middleware

This planning follows the same interdependencies, except that this is simpler: no User interface
Components, no Information Access Functions, no White Functions, no inheritance, no Type
Functions…
Transformation Approach is limited to “How to Build and Reuse Black Functions between Solutions”.
Transformation Tools are limited to: how to help generate Interfaces for exchange Functions and
repositories for Reusable Black Functions.
IT Operation Configuration is limited to Middleware which allow Solution exchanges: send/receive,
synchronous or asynchronous, addressing Function, Conversion…
Enterprise Model and Information Models are the same.
Business and Organization Functions are limited to Black Functions exchanged between Solutions:
no inherited Functions. It can be

• synchronous Exchanged Functions : Imaging, Security, Archiving, Editing, Call Center requests,
Customer Access…

• or asynchronous Exchanged Functions like Flows between Solutions
Process elements may include Sub Processes but not Process Patterns.

08/10/2009
64

8.7.3 A soft approach
When it is impossible to convince Top Management to invest in Foundation, it is not possible to apply the
determined approaches just defined.
But it is possible to start the Foundation process at a slower pace.
Practical tasks could be:

• group all teams working for common good into one Foundation team
• define a Business Glossary , and a Business Entity Model
• select a single Middleware
• implement the Cooperative approach on some projects
• experiment with some modern Transformation Environments
• Carry out one or two pilot projects with an existing Foundation
• Describe Process Map and Solution Map
• Visit Enterprises which have implemented a Foundation approach

Starting these actions will help to convince oneself, to identify arguments, to build proof of concepts, to
persuade internal Transformation teams, before returning to Top Management.

8.8 Foundation life cycle
There are 3 main phases in the Foundation life cycle:

• Prototype Phase : the objective is to prove Foundation efficiency to help make decisions on
Foundation budget, Transformation organization and governance.

• Building Phase : the objective is to progressively Build Foundation by successive iterations.
Ascending compatibility is not possible during this phase, because Foundation design will evolve
several times before reaching stability.

• Maintenance Phase : Foundation is stable; ascending compatibility works; Solutions may take
advantage of new Versions of Foundation with little effort.

8.8.1 Prototype Phase
Convincing top management that Foundation has a high long term value requires not only documents,
explanations, PowerPoint presentations but also proof of concept: Build a Prototype of a Solution to
prove that efficiency is there.
The proof of concept must be based on an available Foundation, but internal Foundation is not ready as
we are looking for budget and time.
One way is to “rent” a Foundation to Build a prototype and obtain Budget, and then decide to Buy or
Build a Foundation which can be very different from the original Foundation used in the Prototype Phase.
Prototype is done to “sell” the Foundation approach and not a specific Foundation.

8.8.2 Building Phase
As for any building, errors are made when Building Components. During the Foundation Building period,
the Foundation team must maintain the freedom to modify the Foundation design: a good structure of
components is difficult to build and requires successive iterations. This is the Foundation Building
period . Once the different layers are mature enough, Foundation will not evolve much. Interfaces are
stable. only implementation is moving. This is the Foundation Maintenance Phase .
It means that there is no automatic ascending compatibility during the Building Phase. Each group of
Solutions using the same Foundation version will have 2 choices:

• either consider the Foundation as a bootstrap which helps to deliver better Solutions, and
diverge : no formal maintenance is required from Foundation team. Foundation team may help to
evolve but does not guarantee full maintenance service as does a Software Editor.

• or migrate every 3 or 4 years from one Foundation version to another one: the effort is
considerable and no migration tools are provided by the Foundation team

The first Customers of the Foundation must be positive Solution teams: first versions of Foundation
will not be well stabilized, they have bugs, support is not professional, Governance is not easy to apply…

When the Building Phase ends, then generalize usage of Foundation to all Solution teams.

08/10/2009
65

8.8.3 Foundation Maintenance Phase
Foundation stability can be recognized by the fact that its Information Model and its Interfaces no
longer shift under pressure from the Solution builder.
Once the Foundation is stable, the relation with Solution teams is different: ascending compatibility
becomes possible . For each new Foundation version, a tool to migrate Information, if really required,
is provided: one can do it for Business Information but also for Configuration Information (parameters,
rules built with Rule Engine). The migration work should be very light as the Information Model is stable:
same Classes are offered, but some new Attributes can be added.
Patches are easy to apply if no modifications are made to Information Model and Interface Model.

8.9 Build or Buy Foundations?
The difficulty is not to Build a Reusable Component, but to Build a structure of thousands of Components
which Reuse each other providing high agility, reliability, scalability, good performance, and simplicity of
usage. So, building is the long way of obtaining it.
However, pieces can be bought outside, but integration is required to offer a simplified view of
Foundations to Solution builders. Just adding Open Source pieces does not provide a full Foundation
structure.
The best solution is to acquire an open, integrated set of Foundation elements which are customizable,
extensible, and which produce Solutions on chosen IT Operation infrastructure. Providers are
progressively Building such an offer: see examples of Sales Force, SAP, Wyde above.
If not found, then progressively build Foundation inside the Enterprise.

8.9.1 How to select good Foundation: prototype!
It is very difficult to verify global productivity gains from supplier’s documentation, declarations or
presentations: they all have very good tools and good Foundation.
But productivity can be very different from one offer to another one: make prototypes and compare.
Do not believe that:
• Programming only represents 20% of total costs and programming productivity is not so different

from one tool/Foundation to another one
• for other activities (analysis, design, tests, documentation, change management…) productivity does

not depend on tool/Foundation
But believe in:
• Finding a set of consistent tools/Foundation which cover all phases and not only programming
• if this set of tools/Foundation is “round trip”, offers different views for each Actor, includes powerful

Business Components, allows immediate testing, supports good Solution Architecture… then overall
productivity can be very different.

Typically a Business Prototype takes 2 to 8 weeks, with 1 to 4 people: global requirements should be
available before starting.
A Technical Prototype can also be Built

• to prove ability to Interface with other Solutions,
• to be compatible with standard IT Operation configurations already chosen by the Enterprise
• to support high volumes of transactions and Information

The Technical Prototype is done by another team, in parallel to the Business Prototype.

8.10 Foundation evolutions
Foundation must evolve as Solutions.
Evolution can be:

• a new Function is available, and old Functions work the same
• an old Function has same interface but a different implementation
• the structure of Foundation Functions has changed

When a new Version of Foundation is delivered, existing Solutions must take advantage of new
Foundation: it means Solution modification.
• new tests for non regression: we must avoid regressions in Operations
• data base migration if Information model has changed
• modification of Solutions if Function Interfaces have changed

08/10/2009
66

8.10.1 How to take advantage of a new Foundation?
A modification in Foundation may require some work for Solution adaptation.
To avoid having to modify Solutions for each new Foundation several techniques are available:
• use configuration tools for Solutions: Rule engine, workflow engine, parameters. They Produce

customization which can be easily isolated from the Solution Software: new version of Foundation is
easy to install

• for each Reusable Function, build a definitive interface even if implementation is very light in first
versions. Definitive Interface enables us to desynchronize Foundation and Solution evolutions: if only
Implementation changes, no modifications are required for caller Solutions, only tests must be
executed.

• use inheritance : modifications in a father-class belonging to Foundation are automatically applied to
son-classes belonging to Solutions. Be careful of impact on:

o user interface : inheritance of Windows may help, but checks must be done on field overlap
o Information model : if information is added or a type is modified in a father-class, it means

migration work

Let’s take an example of successive implementations . You want to provide a Security Function.
• identify the parameters on which the check must be done: Functional Domain, territory, Amount,

Confidentiality Level…
• identify which answer you will get: it can be as simple as “Authorized” or “Not Authorized”
• Based on parameters and possible answers, define the definitive Function Interface and publicize it:

all Solution Builders may use it
• develop Implementation 1 which can be as simple as “Always Authorized”
• develop implementation 2 based only on Functional Domain
• develop implementation 3 which is based on all parameters
• develop implementation 4 which adds storage of a message to management when an Actor decides

to do something forbidden

Implementation 1, which does nothing, allows very rapid delivery of an Interface to Solution Builders.
Successive Implementations will be progressively delivered by the Foundation team, but Solution Models
will not have to be modified.

8.10.2 Synchronize Foundation upgrades
Each time a new Reusable Function is available, naturally, Solution Builders would like to have it as
soon as possible.
On the other hand, integration of a new Foundation Version is time consuming for the Foundation Team,
and migration of a Solution towards a new version of Foundation is also time consuming for the Solution
Team. One of our sponsors would like a 3-year interval between 2 Foundation versions!
Based on our experience, a good interval for the launch of a new Foundation Version is between 6
months and 1 year. In the meantime, we must be able to deliver patches every week or so: a patch
corrects a bug, yet never changes the Information Model.
Full integration work is then required from all Solutions using Foundations before joint launching of the
new Foundation with adapted Solutions. It is difficult to ask Solutions builders to execute such a task for
each new Foundation Version unless it is a very easy job .
If it is not an easy job, we must avoid synchronizing Solution modifications.

08/10/2009
67

9 How can current Solution teams use Foundation
efficiently?

9.1 Main difficulties
Once a good Foundation is available it is difficult to convince Solution Builders to use it.
The reasons are numerous:

• Reusing Foundation means a big change : not only to learn Foundation but also to adapt the
current Approach and to kill the “Not Invented here” syndrome.

• In a multinational group , great distances, different cultures and different languages do not help
• Reusing a Group Foundation means less autonomy and dependency on a Foundation Team

which is not local:
• When there is a merger of 2 Companies: each company comes with its own Foundation (in this

case, choose the best rather than mixing 2 Foundations)
Solution Teams will reuse Foundation if:

• they are convinced that it is good for the Enterprise and themselves
• the right governance is in place
• the right organization is also in place
• a new Cooperative Approach is applied
• they are supported by the Foundation team
• they efficiently use Foundation
• their Solution is not disturbed by new versions of Foundation

9.2 How to convince Solution Teams to use Foundatio n?
Foundation Approach value must be explained by top management .
It is important that Business and IT Solution Builders understand that the Foundation approach comes
from the top management and not the Foundation Team.
Experience has shown that it is impossible to convince everyone.

• Positive teams : some Solution Builders will be happy and declare that they had been waiting for
Foundation for years, they are the positive teams, they believe in the approach.

• Negative teams : some Solution Builders will be against the Foundation approach: they do not
believe it is possible to save time and money with such an approach, they do not think that the
Foundation team is capable of doing a good job, they think Solution + Foundation becomes too
complex to manage, they think that they have overly specific requirements which cannot be
solved with a common Foundation, they want to remain independent in their Business Unit.

• Doubtful teams : the majority of Solution Builders are in between: they like the idea, but do not
know if it really works; they do not want to be the first to use Foundation.

Our recommendation is to start Building Foundation with a positive team, to prove to doubtful teams that
it works, and then generalize to these teams. The negative teams will join once the initially doubtful
teams will have used Foundation with success.

9.3 Which Governance?
Enterprise Architecture governance is required to be sure that Solution Builders do reuse Foundation.
The main problem is that it represents an effort for Solution teams:

• they must understand Foundation
• they must adopt the Approach
• they must not reinvent the wheel each time a Reusable Function is available
• they must accept to Reuse a Function even if they do not like it: they must ask the Foundation

team for modifications, which takes more time than if they were doing it themselves
• they must spend some time delivering what could become a Reusable Function at the end of

their Solution Project.

08/10/2009
68

One way to check good usage of Foundation by the Solution team is to ask the Foundation Support
team to check Foundation usage before definitive approval of the Solution Project. If the check is
negative, Solution project decision should be postponed until Foundation team gives approval.
If Foundation is not adapted, the proof must be provided by the Solution team and not the Foundation
team.

9.4 Which new Solution Models must Reuse Foundation ?
When a new Solution Model is required, it must Reuse the Exchange Foundation.
If a Building Foundation is also available, it must be decided if it is Reused or not.
Once a Building Foundation is available, the difficult questions are:

• When do I Reuse an already existing Solution Model (provided by a Package company or by the
Enterprise) not Built with the Building Foundation?

• When do I Reuse Building Foundation (provided by a Package company or by the Enterprise) to
Build the new Solution Model?

We summarize arguments in following table.

Reuse Existing Solution Model and

Customize
Build a new Solution Model from

Building Foundation
Commodity Solution Evolving Solution
Small number of Users High number of users
 Ability to move employees is important
Transformation Cost is high if:
many Interfaces

Transformation Cost is high if:
weak Building Foundation

Transformation Cost is low if:
low customization

Transformation Cost is low if:
powerful Building Foundation

Weak Business Transformation team Strong Business Transformation team
Weak Building Foundation support Strong Building Foundation support

Easy access to Foundation elements is a key factor.
Some of our Sponsors have defined “Service Repositories ” which allow access to Black and White
Functions in different ways (key words, hierarchy of Functions…).
When Foundation is rich (Thousands of Components), do not try to expose all Components, but
progressively select the Functions really required by Solution Builders

9.5 Organization
See Foundation Organization above.
To summarize: a Solution team includes Business and IT Actors who are co-responsible for project
success.
They benefit from help provided by a unique Foundation Support team.

9.6 Reused Foundation allows a new Approach
Contractual Approach is based on a sequential process whose main item is the “Contract” which
defines all Requirements. It is adapted to Commodity Solutions (see White Paper on Agility).

Enterprises now require a new Cooperative Approach (or Agile Approach) for Evolving Solutions .
The objective is not to complete the Solution in the first version, but get it to a point where a set of
capabilities can be tested and delivered to first users, and then to deliver other Versions at short intervals
allowing to progressively discover needs and solve the compromise between what is desirable and what
is possible: this Approach works better if a Building Foundation is available to guarantee Solution
Flexibility and extension.
Reusing the same strong Building Foundation allows the breaking down of a large project into smaller
projects : consistency is achieved by using the same Foundation and not by fully detailed design of the
large project prior to building it.

08/10/2009
69

Main differences when applying Cooperative Approach:

• Start with Entity Model (while present approach is based on Processes)
• design Processes independent from Organization
• mix Business and IT Actors in same teams
• simplify Project Management :

o less Actors, less requirements, less meetings or reporting
o more Architecture quality, more prototypes, more iterations

• progressive delivery by iterations
See http://www.scrumalliance.org/pages/what_is_scrum

Strong configuration possibilities mean better rela tions with Business
If Foundation provides strong configuration possibilities through Parameters, Rule Engine and Workflow
Engine, it helps to build evolving Solutions.
Configuration change does not require expertise in Software Development: it requires understanding the
Model structure. Business people may be trained to directly configure the Solution. They become able to
directly modify pricing, adapt commissioning rules, create Products… It means less work for IT teams
and faster reactivity: Business teams like it!

9.7 How Foundation supports Solution teams
Solution Builders will use foundation if a Foundation Support team brings them the help they need:

• Training
• Consulting
• hot line

A member of the Support team cannot answer all questions, but he can answer 80% of them: he calls on
experts from the Foundation Building team only when necessary.

9.8 Solution Versions and Foundation Versions
When a first version of a Solution is Built, we try to Reuse classes and Functions as they are.
In former Versions, it can be necessary to specialize the reused class (to customize a Function or add
Attributes): adding a new inherited Class is more complex than just updating an existing Class. This is
why we always advise that you create a Solution Class which inherits from Foundation Class even if no
modifications are required on first versions of Foundation.
More detailed answer

9.9 What risk when Solutions depend on Foundation?
If most important Solutions are Built with a Foundation, what is the dependency risk?
Solution Models Built with Foundations are much easier to understand because of their clean structure
and their smaller size. If a Solution Architect leaves the Enterprise, it will be easier to maintain their
Solution Model.
If Foundation is internally Built, it must be maintained. Foundation Architects may leave the Enterprise.
It requires checking the quality of Foundation, to ensure that documentation is clean and up to date.
If Foundation is provided by an external company, train some of your staff to be able to maintain the
Foundation in case it becomes necessary one day, and obtain a legal guarantee that source code will be
obtained. The real guarantee comes from good Architecture, good structure of Models, Foundation or
Solution.

08/10/2009
70

10 Foundation and Packages

10.1 Trend towards Reuse

Page 39

Specific
Solution
Models

Reuse by
Package

Nb of Solutions

Long Term Range

Most Solutions are
independent

developments.

More and more
Solutions come

from external
providers

More and More
Solutions are based

on reused Components

Trend towards “Reuse”

But:
•Competitive advantage?
•Agility?
•Superset

But:
•Too expensive
•Too long
•Too risky
•Business effort to
Model Business

For Commodity
Solution s:

Production, Back
Office, Resource Mgt...

For EvolvingSolutions :
Front Office, CRM,

Business Intelligence,
End to End Process,

Product Design,...

Reuse by
Components

First step : Enterprises started to Build their own Solution Models. Multiplication of Solutions made it
difficult.
Projects became too long, too expensive and required more and more Business involvement to carefully
define requirements.

Second step : a new industry of package providers (Oracle, PeopleSoft, SAP…) developed Packages
for Commodity Solutions (ERP, HR, Accounting, Back Office…), for which requirements were close
between Enterprises. It helped save time and money, requirements were ready made: Business Analysts
just had to complement them.
But it appeared that this approach had reached its limits when Enterprises tried to Reuse Packages for
Evolving Solutions (CRM, Front Office, Business Intelligence, End to End Process, Product Design…):
it was difficult to obtain a competitive advantage from a Solution Model which was also available to
competitors, agility was difficult to achieve when new Functions were required, and diversity of
Requirements increased the volume of the Package which included requirements for all Enterprises.

Third Step : this is why “Reuse by Components” has become a new alternative for Evolving Solutions.
As for “Reuse by Package”, the Enterprise does not reinvent the wheel, but it may assemble
Components to Build new Evolving Solutions different from those Built by Competitors. In return, they
require a Building Foundation and the related Approach.
Package providers have understood this trend well and are preparing offers for Foundation (see above).
The target Enterprise Architecture will be a mix of Packages for Commodity Solutions and Models Built
with a Foundation of components for Evolving Solutions. The percentage will depend on the nature of
the business.

10.2 Using a Package is importing its Foundation.

08/10/2009
71

Page 33

Evolving
Solutions

Commodity
Solutions

Enterprise
Foundation

Package
Foundation

Built with

Requires
interoperability

Evolving
Solutions

Commodity
Solutions

Package Foundation
as

Enterprise Foundation

Enterprise Foundation / Package Foundation

Enterprise decides that
Package Foundation will

become Enterprise
Foundation

An external Solution has a Foundation, it can be large or small, but always exists: Operation IT
Infrastructure, Middleware, Entity Models, Access functions, UI, Organization and Business Functions
are part of the Package.
Package Foundation and Enterprise Foundation are different and must coexist.
Coexistence means at least that:

• Information Model must map on 4 levels:
o Business glossary
o Relations
o Attributes
o Types

• same exchange mechanisms must be used
• Package Supplier provides open Functions to read package Information: it allows Evolving

Solutions to read Information owned by the Package
• Package Supplier provides Functions to feed Package Solutions: it allows Evolving Solutions to

feed Information inside the Package

Some more mechanisms can also be provided, such as:

• Package Supplier provides Functions to update package Information: it allows Evolving
Solutions to directly update Information owned by the Package

• Package Supplier enables change implementation of some of its internal Functions : it allows
the Package to Reuse Functions provided by Enterprise Foundation

o Ex: Package Solution Reuses Enterprise Repositories instead of its own files
o Ex: Package Solution Reuses Authentication and Security Functions
o Ex: Package Solution accepts participation in an End to End Process managed by an

external Workflow engine

10.3 Can Package Foundation become Enterprise Found ation?
The Enterprise may decide that the Package Provider Foundation becomes the Enterprise
Foundation . It is possible if

• the Package Foundation is adequate
• the Package Provider accepts to deliver its Foundation
• the Enterprise accepts to depend on the Package Provider for its Foundation

08/10/2009
72

Integration of Package Solutions and Evolving Solutions is then easy because they are based on the
same Foundation.

But Package Foundation is generally not delivered by Package providers for different reasons:

• Package provider wants to protect its software
• Foundation is not packaged as a Software product as the Solutions are
• Revenue model is not clear : customers are ready to pay for Solutions, yet they are not still

ready to pay for Foundation

This may change in the future. Package Providers could propose not only Package Solutions, but also
their own Foundation to customers because:

• Enterprise realizes that Building Foundation is a tough task: it costs more than they thought and
takes a lot of time before reaching high Reuse. So why not to concentrate on Evolving Business
Solutions rather than Foundation ?

• Revenue on Solutions is much higher than revenue on Components. Package Suppliers do not
identify high Business Revenues from Foundation. But Enterprise difficulties in Building
Foundation will increase the value of available Foundation: revenue Model should be better for
Package Supplier.

• Helping its Customers to Build its own Evolving Solutions improve the image of Package Solution
providers who are often accused of locking Functionalities inside a closed Solution

• Coexistence of Evolving Solutions and Package Solutions based on same Foundation is easy to
achieve

First target should be Enterprises which use many Package Solutions from the same supplier; they
realize that the number of Evolving Solutions is increasing and do not want to invest in Foundation. They
should naturally ask Package provider to also become Foundation provider.
The market is not mature today, but it certainly holds promise for Package Providers and Enterprises.

10.4 How to select a Package if an Enterprise Found ation already
exists?

Generally, the main criteria for selecting a Package are:
• delivered functionalities
• cost and time for license, customization and deployment

Other criteria should be Enterprise Foundation compatibility with Exchange Foundation , at least for:
• Entity Model : business concepts, identifiers, relations
• exchanges between Package and Specific Solutions built with Enterprise Foundation

o Information access from Package to Foundation Repositories
o information access from Foundation to Package Repositories

• IT Infrastructure : must at least interconnect with same middleware.

If the Foundation team is not strong enough, the weight of availability of Functions will be stronger than
the weight of easier integration or easier evolution.
One of our Sponsors has 4 different CRM Solutions. They explained that the first key choice was taken
because the offered functionalities mapped with what was expected: the Foundation team explained that
the selected Solution was not able to evolve without a very high adaptation cost; but these arguments
did not suffice, and the product was chosen. When new CRM requirements emerged, a new Package
was added because the first package was not able to satisfy them at a reasonable cost; today
coexistence of 4 Solution Models for CRM with 4 different Customer files is a very cumbersome
Architecture: it is difficult to make synchronized evolutions, it is far too expensive.
This kind of story is frequent and partly explains present complexity.
To avoid it:

• Define the Exchange Foundation and ask all new Solutions (package Solution or Evolving
Solution) to respect this Foundation. It guarantees interoperability.

• The top management must approve these rules and their consequences on future choices
• Communication must be carried out on why these rules are good for the Enterprise

08/10/2009
73

• For each key Solution decision, apply these rules before deciding on a new Package: it requires
adapted Governance.

10.5 Reuse by Package or Reuse by Foundation ?
The efficiency of the Building Foundation has a strong influence on Package decision. If Building
Foundation is powerful, then it can be faster and cheaper to Build a Solution rather than integrating an
external Solution.

10.5.1 Reuse by Package
Any company which buys a package knows that time and money are required to integrate this package
in their Enterprise Architecture:

• Package must be customized : by configuration (parameters, rule engine, workflow engine if they
exist) or by extension

• Package must be interfaced to other Solutions built with Enterprise Foundation
o Information access from Package to Foundation Repositories
o Information access from Foundation to Package Repositories (if allowed)
o Call of Package Business Functions by Enterprise Solutions
o Call of Enterprise Business Functions by Package (if allowed)

if the package is not open to exchanges, Information and Functions will be duplicated
• Users must be trained to use new Solution: new User Interface, new security system, new

workflow, new editing system…
• IT Operations must also be trained to Operate the Package
• Globally the Enterprise Architecture becomes more complex : the package imports its own

Foundation which is a complementary Foundation to manage
• Evolution of heterogeneous Solutions is more complex when they evolve: synchronization is

difficult

10.5.2 Reuse by Components
When you Build a new Solution Reusing a powerful Building Foundation, you must pay the price of
Building it, but:

• no customization is required
• Interfaces are ready made
• User training is light
• IT Operation training is light
• the Enterprise Architecture is based on same Foundation
• Evolutions and synchronization are much easier

This is why Enterprises which own powerful Foundations have a lower percentage of Packages.
The trade-off between

• cost of Building Solution with powerful Building Foundation
• all actions required to integrate a Package

is more often in favor of Reuse by Foundation.

Same remark could be done with Components: if Building Foundation is powerful it will become less
expensive to Build a new Component than integrate an external available Component which comes
with its own Foundation (specific UI, data base, information models, types, IT infrastructure…).

08/10/2009
74

11 An example of a powerful Building Foundation for an
Insurance Solution

11.1 Why Foundation?
The goal of any Enterprise is to Deliver a Business Product for its Customer: the Product can be goods
or services or both:

• for Insurance, it is the Benefit delivered to the covered Actor when a bad event happens
• for Bank it is “send money” or “get a loan”
• for Telecom it is “Call somebody” or “receive an SMS”,
• for Water utility it is “get water”
• for Car manufacturing it is “get a car” or “repair a car”
• for Transportation companies it is “transport a person” or “transport goods” or “rent a hotel

room”....

To obtain Product, the Customer must Subscribe a Contract .
Deliver Product and Subscribe/update a Contract are defined by the Product Designer in an Offer.

The Core Business Domain allows high diversity : many similar Products, many similar Processes,
many similar Functions or Windows.

This is why if you are a Group of several Companies, the difficult question is: “Must we Centralize or
Decentralize the Business Model between different Companies of the Group?”
If you are a Package Provider, the difficult question is: “Can we Build a unique Model for different
Business Lines and different Countries?”

Using “Exchange Foundation” it is difficult to achieve this goal:

• A small number of big Black Functions means that each of them will be a superset of this
diversity: many parameters in the interface, complex implementation and high evolution. For
example if you Build a unique Black Function “Compute Price” for a life insurance business which
provides thousands of different products, this Function will be too big and complex to be really
Reusable.

• On the other hand, Building hundreds or thousands of small Black Functions is difficult to
manage and to Reuse. Business Modelers will be disappointed by the small granularity which
does not fit with their main Business Functions.

We feel that working with a “Building Foundation” can be very efficient in this case.
As it is a complex topic, we prefer to give an example: an Insurance Solution Package has been Built
using powerful Building Foundation. Let's explain how it works.

Same example could be Built for many other Business Domains who manage a large variety of Products
(goods or services) like; Banks, Telecom, Utilities, Distribution, Media, Education, Transportation,
Industry...

11.2 A Global Insurance Solution for different Comp anies
The Insurance Package Solution must cover:

• all Insurance Product lines : Property and Casualty, Life, Health, Disability, Group,
Reinsurance…

• all Processes : CRM, Product design, contract management, claims, billing, accounting,
commissions…

• all Countries
• all Actors : insurance companies, brokers, customers, prospects, partners

08/10/2009
75

Some say that the Insurance Business is the same in different countries and different business lines.
They would like not to reinvent the wheel: in all countries, you must prepare Offers, subscribe policies (or
Contracts), bill, manage claims and manage distributors.
Some other say that Insurance products, tax systems, distribution channels, languages are not at all the
same in different countries or in different business lines.
Both are undoubtedly true: we must objectively identify what is similar from what is different to Build
a Customizable Solution.

11.2.1 What is similar: the Business Architecture
To present a simplified view of the Insurance Business: first Product Designers define the Offer, then
Customers Subscribe Contract, then the Insurance Company delivers Benefits to Beneficiary when a
bad event happens.
As for most Business domains (Bank, Utilities, Telecom, Distribution, Industry, Transportation…),
Insurance is based on the same Product structure and the same Process Patterns . This Business
Architecture must be customized Product by Product and Process by Process in each Company.

Product Structure
For the same Offer, several Benefits can be offered. For example the “Car Insurance Offer” includes
benefit “Repair the damaged car” and “pay for hospital expenses”.
The number of Offered Benefits can be high: to simplify subscription, Benefits are grouped into
“Coverages ”.
So the Offer is broken down into Coverages which are in turn broken down into Benefits. The customer
has just to select among a limited number of Coverages and not a large number of Benefits.

Defining these 2 dimensions

• Offered/Subscribed/Delivered (horizontal)
• and Offer/Coverage/Benefit (vertical),

allows us to identify the following Insurance objects:

Page 34

Product Structure

Offer Contract

Claim Event

Offered Coverage Subscribed Coverage

Offered Benefit Subscribed Benefit Delivered Benefit

OFFERED
(Product)

SUBSCRIBED
(Contract)

DELIVERED
(Claim)

O
F

F
E

R
C

O
V

E
R

A
G

E
B

E
N

E
F

IT

The links between objects are Relations : a Contract relates to an Offer, is broken down into several
Subscribed Coverages and is Related to the Claim Event when it happens (to be precise we should
present the UML diagram and define each detailed Relation, but we preferred to remain simple in this example).
If Subscribed Coverages are not customizable at subscription time, Offered Coverages are sufficient, no
Subscribed Coverage is required (same remark for Subscribed Benefit).

08/10/2009
76

Fill the Product Structure
For each Product Line, we must fill the different boxes with Information Attributes and Function
categories . We give some examples in the following slide.

Page 35

Product Structure

OFFERED
(Product)

SUBSCRIBED
(Contract)

DELIVERED
(Claim)

P
R

O
D

U
C

T
C

O
V

E
R

A
G

E
B

E
N

E
F

IT

•Offer ID
•Coverage list
•Age limit

•Check eligibility
•Compute Price
•Edit Contract

Information Function

•Coverage ID
•Benefit list

•Check eligibility
•Compute Price
•Bill Subscriber

•Benefit ID
•List of insured
events

•Check Claim
event
•Evaluate Benefit
•Pay Benefit

•Contract ID
•Ref to Offer
•Ref to Insured item
•Ref to Subscriber
•Ref to Beneficiaries
•Selected coverages

•If jewel: coverage amount

•Restrictions on
claim event

•Event
description

•Delivered Benefit

Insured ItemActor

Information Attributes:
Let’s take the example of the “Offer” Entity: Attributes must be added

• each Offer requires an identifier ; you could also add an Offer Name and a Version to separate
each successive image of the Product after each Offer modification

• each Offer authorizes a list of Coverages : some are compulsory, some are dependent, some
are incompatible

• we added the Attribute “Age Limit” just to illustrate that some specific Attributes will be added
Do the same with each Insurance Entity.
Note that some Entities like “Contract” require relation with other Entities like: Subscriber, Beneficiary,
Insured Item (Good or Person). Add these Entities each time they are required.
(each Attribute should have a Reusable “Type” as defined above).

Functions:
The Product designer defines all categories of Functions and classifies them, such as:

• “Check eligibility to Subscribe”: based on Information belonging to Item, Subscriber, Beneficiary;
it can be done at the Offer or at the Coverage level

• “Compute Price”
• “Evaluate benefit”: it is defined by Product Designer at “Offered Benefit” level, but in some cases

it can be Customized by the Distributor at “Subscribed Benefit” level.
For each Function, check if the Information is available: if not, add it to the right Insurance Entity.

Process Patterns
Identify main Insurance Process Patterns and classify them into Transformation Processes which modify
the Model and Operation Processes which Operate the Model. For example:
Transformation Process Patterns

• Build a new Offer
• Modify an Offer
• Change the Price

Operation Process Patterns
• Quote

08/10/2009
77

• Subscribe a Contract
• Modify a Contract (“Endorsement”)
• Bill
• Manage a Claim

Each Process Pattern chains Activities in the same order, except that the contents of each Activity is
different.
For example, as presented in the following slide, each Subscription Process chains Functions like:

• Select Offer
• Get Customer Information
• Get Covered items
• Select Coverages
• Compute Price
• Check Eligibility
• Underwrite (which means: ask experts to check eligibility if risk is high)
• Get customer Approval
• Pay
• Print
• Store

To simplify the presentation, it is presented as a sequential chain, while there can be some more complex
navigation between Activities.

Page 36

Process Pattern

Select
Offer

Get
Customer

Info

Select
Coverages

Compute
Price

Print
Quote

Store
Quote

Quote

Select
Offer

Get
Customer

Info

Select
Coverages

Compute
Price

Check
Eligibility

Get
Customer
Approval

Subscribe

Print
Contract

Store
Contract

Pay
Contract

Select
Contract

Modify
Compute

Price
Check

Eligibility

Get
Customer
Approval

Endorse
Print

Updated
Contract

Store
Contract

Pay
Contract

Read
Contract

Compute
Price

Print
Bill

Bill

Describe
Event

Select
Contract &
coverages

Check
Event

eligibility

Evaluate
Benefit

Get
Customer
Approval

Pay
Benefit

Manage claim

Print
Contract

Store
Quote

Pay
Contract

Underwrite
Get

Covered
Item

11.2.2 What is different
• Products are different: different coverages, different rules requiring some additional information
• Processes are different: Process Patterns are the same but assignment of Activities to Actors

are not the same: it depends on the Organization
• Context is different: Actors (Users or Customers) use different languages, different currencies,

different security functions, different user interface...
• Existing Solutions to which the new Solution must interface are different

Once similarities and differences are well identified at business level, it becomes possible to Build a
Foundation to support similarities on the one side and to allow customization on the other.

08/10/2009
78

11.3 Build the Insurance Foundation
It is a Business Approach more than an IT approach.

Page 37

Graphical Library
File System

Light Object,
Scenario

UI Engine
Rule Engine
Type Engine

WydeWeb
MFC Libraries

Full Object
Persistency Engine

Interface Engine
Oracle, DB2, SQL
Server Libraries

Descriptor
Security Engine

Workflow Engine
Desktop Engine

Process Root

Actor, Organization,
Contract, Account...

Billing Engine
Editing Engine

Printing Library
Subscribe, Pay

Processes

Claim Specialized Billing Actuarial computations
Libraries Claim Process

P/C Contract, P/C
Claim, Car, Home...

IDA, Darva
Specialized
Processes

Customized Car
Contract

Customized Rules
Interfaces with other

Solutions
Customized
Processes

ENTITY/TYPE WHITE COMPONENT
(Engine)

BLACK COMPONENT
(Librairies)

PROCESS

Insurance Foundation

7 layers of Foundation have been progressively Built from Technical layers to Business layers.
We present them starting from technical layers.

• OS layer is delivered by the OS Provider
• UI layer delivers the UI Engine: manages Reusable GUI elements, offers inheritance and

Composition mechanisms
• Persistency layer delivers the persistency engine based on Data base libraries: it manages

Relations, versioning, maps object/table and Offers Functions to Read, Write, Delete Business
Objects…

• Organization layer delivers the Security Engine and the Workflow Engine; it also includes
Functions to manage Entities (called “Descriptors” in this slide).

• Cross-Business layer delivers Business Models Reusable for all economic activities: Entities
like: “Human Actor”, “Computer Actor”, Contract, Account: it includes Business Entities, Access
Functions to Entities, Processes to Manage these Entities such as “Subscribe Contract”, or “Pay
a Bill”, “or “Print”.

• Insurance layer includes everything which is specific to Insurance Business and not already
Provided by the Cross-Business layer: like Claim management, Billing Specialized to Insurance
business

• Insurance Line layer: different Product Lines exist in Insurance like “Property and Casualty”
Insurance (insure goods such as Car or Home), Life Insurance, Health Insurance, Group
Insurance… In the slide, we just represented one line of Business: P/C. This level defines
Entities, Functions and Processes for each of these levels;

The last green line represents what must be done for a Company which Reuses this Foundation

11.4 How each Company Reuses the Insurance Package to Build
its own Model

11.4.1 Add Information to Entities, if necessary
Check if more Information is required on existing Entities.
There should not be many. It generally occurs for side Entities like Actors or Insured items, more than for
core Entities like Contract or Claim.

08/10/2009
79

If Dynamic Attributes are allowed, the Business Modeler may use this mechanism directly. Via
configuration it becomes possible:

• to add Attributes,
• to automatically increment the UI with these new Attributes
• to make these new Attributes available for Rule Engine usage

11.4.2 Select Implementations
Some Functions have one Interface but may propose different Implementations because requirements
are not the same in different Companies. This is the case, for example for:

• Security Function
• Editing generation Function: define Model, send an XML flow
• Workflow mechanisms such as “by Actor” or “by team”
• Desktop Model
• Error management
• Batches logs
• Business intelligence target
• Types: selecting standard presentations for types like dates, name, addresses…

The Package Solution proposes different Implementations and allows each Company to select the ones
it prefers.

11.4.3 Customize
If proposed implementations are not sufficient, the Company requires customization. The customization
does not change the global structure : it is just another implementation of some layer parts.

-Customization can be achieved by Building new Implementations: Security, Editing, Business
Intelligence...

-Customization can also be achieved by Building Interfaces with existing Solutions: Security, Printing
Engine, Accounting feed, may all require Interfaces to external Solutions.
Enterprises, today, do not replace all Solution Models at once, they replace Solutions progressively.
For example, an Enterprise may decide to replace its Claim Solution only. The new Claim Solution must
get information on Contracts by interrogating the old Contract Solution: it is carried out through an
Exchange Function (Black Function). If a large variety of Products is used, many Exchange Models are
required: a lot of work for Interface team. Each new interface requires work on the new Solution side and
on the old Solution side.
The semi-interface on the new Solution side can be automated by just mapping Attributes of the Offer
Model with Attributes defined in the Interface.
If, one day, the Enterprise decides to replace its old Contract Solution Model by a new Contract Solution
Model based on same Insurance Model, then integration of Claim Solution and Contract Solution
becomes obvious: Interface work is no longer required.

-Customize Processes if you want to add Activities.
Process Patterns are built by splitting the different Activities: remember that Activities are defined as a
subset of Process Rules which are always executed by a single Actor.

11.4.4 Model each Insurance Product
“Creating a new Offer” is a Transformation Process which helps the Product Designer to Model its new
Product: identifier, name, coverages, eligibility rules, pricing rules, benefit evaluation rules... are stored in
a static catalog and Reused by the Foundation.
Once the Product Model is ready, there is nothing more to do : deliver the new Product Model to IT
Operations, and all Processes become available to Operation Actors for this new Offer . There is no
specific Contract or Claim to Model for each new Product. There is nothing magic: it is just the elegance
of the Insurance Architecture which executes the same processes and Reuses the same Entity Models
with a different context of Rules. Rules are then considered as Information stored, and retrieved as any
Information to be executed.

08/10/2009
80

There is no software development required for new Products except specific static Rules: time to market
becomes really different. Product designers follow the specific Process which guides them in Building the
new Product, asking to define Rules at the right level each time it is required by the Model.
This Transformation process is based on “Configuration” (parameters and Rule Engine): it can be
executed by someone who has no Software Development experience, but understands the Business
structure.
Classification of Rules by level (Offer, Coverage, Benefit) and category (Eligibility, Pricing, Evaluation…)
guides the Designer
The tool should present only useful Attributes to the Rule Modeler and not thousands of Attributes.
The tool should also allow him to

• Build parameter tables ,
• Reuse Rules,
• check syntax ,
• test a rule immediately

11.4.5 Model parameters for assignment of Activitie s
Assignment of Activities to Roles can be automatically achieved by parameters managed by the Rule
Engine: just playing with parameters allows you to offer different Organization scenarios.
Each Actor Role is defined by their Rights (for security) and Duties (for assigning Activities).
By matching Duties and context of the Activity, it becomes possible to dynamically assign Activity to the
right Actor.

To summarize:

• The Company customizes the new Solution
o adds Attributes if really necessary
o selects preferred implementations
o adds implementations if really necessary
o Builds Interfaces to legacy Solutions

• Models hundreds of Insurance Offers just by using configuration (parameters and Rule engines)
• uses the workflow engine to Model Organization Scenarios

11.5 What is the final Structure?
11.5.1 Which elements of the Building Foundation ar e present?

Page 38

Hardware standards and OS Mechanisms

Reusable Processes:
composition and inheritance

Insurance Package Foundation

Process Components

Business Functions

Technical Foundation

Specific-Business Functions

Information
Access mech.

Security
Functions

Information
Access Functions

Cross-Business Functions

Type Functions

Tr
an

sf
or

m
at

io
n

A
pp

ro
ac

h
Tr

an
sf

or
m

at
io

n
To

ol
s

Transformation
Foundation

Operation
Foundation

Core Foundation

Organization
Functions

Workflow
Functions

Reusable
UI elements

Exchange
Interfaces

UI
mechanisms

Exchange
mechanisms

Info.Access
mechanisms

Solution using
Enterprise
Foundation

External
Solution

Internal
Solution

using
Enterprise
Foundation

External
Solution

E
nterprise M

aps

Solutions

Solution Structure

08/10/2009
81

In this Solution Model, almost all elements of a Building Foundation are Reused.

11.5.2 Transformation Tools
To succeed implementation of such an Insurance Architecture, a set of Transformation Tools has been
used which are all integrated around a single Meta Model (about 1000 classes):

• UML design tool
• Software development tools
• Software debugging tool
• Integrated Rule Engine
• Process Building and Workflow engine to assign Activities to Actors
• Software Configuration management
• persistency Broker
• User Interface Building tools
• Portal Building tools
• Multi Enterprise mechanisms: language, currency…
• Tuning tool
• Solution Interface Building tools
• Migration tool
• Tools to retrieve Foundation elements
• stress testing tool
• Test Automation tools
• Software quality analysis
• workgroup tool

They use powerful Features such as:
Information Access mechanisms

• UML modeling tool
• access Function to Business Objects (via OQL) on different DBMS: DB2, Oracle, SQL Server
• versioning
• Functions to navigate through Relations are directly available by language
• replication Functions
• Dynamic Attributes

Information Access functions

• a Cross-Business Information Model has been designed: Actors,
• an Insurance Model has been defined
• Reusable Access Functions are delivered to all Business Entities

Exchange Mechanisms

• interface with any standard middleware: MQ, WebSphere
• Interface builder: for mapping, conversion

Exchange Interfaces

• adapters are provided with standard external Solutions such as: LDAP, standard printing
systems…

UI mechanisms

• inheritance and composition of UI elements
• light client tool

Reusable UI elements

• Reusable Type UI
• Customizable Desktop
• all Reusable Classes offer their UI elements to sub-classes

08/10/2009
82

Type Functions

• various Reusable Types: date, time, amount, name, address, text, table, hierarchy…
• for each Type: definition, internal format, external presentations, attached Functions

11.5.3 Size of the Solution
The next slide gives some numbers by layer: number of Classes and number of Functions.
Building Foundation, including Business Lines, has 6,900 classes and 47,000 Functions which reuse
each other.

Page 39

Technical
Foundation

Number of
Classes

Number of
Functions

Total 2070 18.160

Persistency Engine 110 2060

Interface Engine 240 2100

Rule Engine 520 3200

UI Engine 180 1800

Type Engine 750 7300

Light Client Engine 270 1700

Cross-Business Number of
Classes

Number of
Functions

Total 1850 13620

Organization 490 4230

Cross-Business 1360 9390

Cross-Insurance Number of
Classes

Number of
Functions

Insurance 1610 9110

Insurance Lines Number of
Classes

Number of
Functions

Reinsurance 168 1097

P/C 536 2098

Cash Value 203 914

Health 195 734

Loan Protection 251 1517

Each Business Line benefits
from a Foundation of 5.530
Classes and 40.800 Functions

Each Business Line benefits
from a Foundation of 5.530
Classes and 40.800 Functions

Each Business Line benefits
from a Foundation of 5.530

Classes and 40.800 Functions

Some numbers for Insurance Foundation

11.6 Value of Building Foundation
In this case, a Solution Package has been Built in such a way that adding new Business Lines is
relatively simple: a 25-person team of experts have Built and maintained this architecture.
This is a good architecture for a package provider which prefers to have one Solution Model for many
Business Lines. One important thing these numbers tell us is that it costs from 1,000 to 2,000 Functions
for a new Business Line, which is 5% of the Building Foundation investment.

Installing the Solution Model for one Company has a cost: choose among implementations, build
interfaces with Legacy Systems, model products are all necessary activities. But the total cost to deploy
the Solution is much lower than with classical tools because most of the Customization is done through
Configuration.

In return, it is necessary to Build or Buy a Building Foundation. Building such a Foundation is difficult and
requires experts who have already Built such Foundation.

08/10/2009
83

Page 40

Large parts of Foundation are
Reusable by different Businesses (nb of Functions)

Base Foundation
18,000

Cross Business Foundation
13,000

Specific
Business Foundation

for Insurance
9,000

Solution
Insurance
Solutions

Specific
Business Foundation

for Telco ...

P
/C

20
00

Lo
an

15
00

H
ea

lth
70

0

R
ei

ns
ur

an
ce

C
as

h
V

al
ue ...

Specific
Business Foundation

for Bank

Company 1

Company 2
Solution

Telco
Solutions

Company 1

Company 2
Solution

Bank
Solutions

Company 1

Company 2

Size of box is
proportional to

effort

Size of box is
proportional to

effort

Size of box is
proportional to

effort

Size of box is
proportional to

effort

In the end, Building Foundation represents the majo rity of the Model : Models for Business Lines
like P/C (Property and Casualty) are small. It means a large Building Foundation team and a small
Business Line teams.

Another interesting consequence is that lower layers can be Reused in business domains other than
Insurance. Layers up to Cross-Business have been Reused for the Telecom industry and Manufacturing.

08/10/2009
84

12 Exhibits

12.1 Exhibit “List of Questions on Foundation”
After discussion with its Sponsors, CEISAR classified their main questions into 4 categories:

• What is Foundation?
• How to decide Foundation?
• How to build and maintain good Foundation?
• How to efficiently use Foundation?

12.1.1 Questions on “What is Foundation?”
• Foundation definition and classification
• The Foundation perimeter will not be the same for an Industry like Chemicals or a Service activity

like Finance. Is it possible to define this perimeter according to Enterprise Model strategy?
• Which frontier between Group and Company Foundations?
• What does Foundations become when using packages?

12.1.2 Questions on “How to decide Foundation?”
• What works today in various industries? Which elements of Foundation are mature and widely

deployed across Companies? Which elements are not deployed so much?
• How to measure Foundation Value? Which criteria to measure Foundation efficiency? Is it Reuse,

Flexibility, Productivity, Modularity?
• How to obtain budgets for "Foundation"?
• Who is the Foundation owner?

12.1.3 Questions on "How to build and maintain good Foundation?"
• How to manage Foundation risks? How to find relevant parts in Foundation?
• Foundation: a list of independent elements, or an integrated structure?
• How to ensure upwards compatibility?

• Parallel evolution of Foundation layers: ascending compatibility?
• Parallel evolution of Solutions and Foundation: ascending compatibility?

• Scalability
• Granularity
• User interface inside or outside Foundation?
• Which planning for Foundation
• Do we buy or build Foundation?
• Best of breed or minimum providers ?
• How to build multi-Enterprise foundations?
• What does Foundation become when using Packages?

12.1.4 Questions on "How to use Foundation?"
• How can project teams efficiently use foundation: governance, change management?
• What is the adapted Approach?
• How to certify Foundation usage by Solutions?
• What is needed from Foundation Support?
• Reuse by package or reuse by Foundation?
• What is the impact of Foundation on Package selection criteria?

08/10/2009
85

12.2 Exhibit "CEISAR Terminology"
CEISAR uses the same wording in all its white papers. We here summarize the main definitions.
If you are interested in more detailed definitions, go to white paper on www.ceisar.org

The goal of an Enterprise is to deliver a Product (Goods or Services) to its Customer.
An Enterprise groups all Actors under a single responsibility.
Governmental agencies, Universities, research centers, associations also are considered as
“Enterprises”.
In a Group of several Companies (or Business Lines): the Group is an Enterprise and each Company
is also an Enterprise.

To achieve their goal, Actors execute Actions with Information .
Actors can be persons (like employees, consultants, partners, customers…) or computers .
Manual Actions are executed by persons while Automated Actions are executed by computers.

When the real world becomes too complex, it must be modeled.
The Enterprise Model is a simplified global view of the real world which helps us to understand and
react: it includes Entity Map, Process Map, Function Map, Solution Map.
The Detailed Enterprise Model describes

• Actor Model: Roles for Human-Actors, Configuration for Computer-Actors,
• Action Model: Procedures (for Persons) or Software (for Computers)
• Information Model

An Enterprise executes Operations and Transformation.
Operations means day to day Activities according to the current Enterprise Model.
Transformation means building, updating and deploying the future Model (the “Projects”):

• Transformation Engineering is building the Model
• Transformation Management is managing the project (planning, resources, exceptions…)

Enterprise Architecture describes how Actors execute Actions, with Information, in Operations and
Transformation: the full scope.

A Solution Model is a consistent list of Action Models: CRM Solution, HR Solution, Pricing Solution. The
Solution includes Process, Organization and Software: this is why we prefer to use the term “Solution”,
rather than “Application”.
Commodity Solution : all requirements can be defined before building the Solution Model (it requires
Contractual Approach). See CEISAR White Paper on Agility.
Evolving Solution: all requirements cannot be defined before building the Solution Model (requires
Cooperative Approach)

Business Process: Chain of Actions delivering Value to the Process Client and triggered by a Business
Event (sell, produce, manage...)
Organized Process: a scenario of a Business Process for a given organization triggered by an
independent Event
Activity: set of Functions executed by same Actor at same time inside an Organized Process
Function: elementary Action with Interface; may call other Functions.

Business Function : required for Business purposes like compute Price, Print, checks
Organization Function : only useful for Organization purposes like authorize, find next actor, add
to To-Do list

Reused Solution Model : Solution Model reused by different Enterprises (provided by a Package
supplier or by the Group for its Companies)
Customized Solution Model : Reused Solution Model, but authorizes customization

• by Configuration : parameters, dynamic Attributes, Rule Engine, Workflow Engine
• by Extension (inheritance): allows splitting of maintained parts

08/10/2009
86

Shared Solution : Solution Operated for several Enterprises; implies that these Enterprises Reuse the
same Solution Model.

Foundation : Reusable Models
Operation Foundation includes

• Enterprise Model
• Reusable Operation Information: Glossary, Master Information Model
• Reusable Operation actions: Business process patterns, Reusable Functions (SOA or not)

Transformation Foundation includes Approaches and Tools reused by Transformation teams.

08/10/2009
87

12.3 Exhibit “Detailed CEISAR Cube”
A more detailed figure can be proposed by introducing Actors, Actions and Information, for Business and
IT.

Page 41

Share Resources and
Reuse Models (Foundations)

The Model
(Doc and
Software)

Transformation Operations

Agility

Complexity

Real World
execution

Synergy

Ressources Shared
by Operation teams

Resources Shared
by Transformation teams

M
odels reused

by O
perations

Business

IT

Share Units
•Call center
•Procurement
•IT Production

Enterprise Model: the« Maps »

Operation Execution

Acteur ActionActor

Transformation Model
Info.

Model
Action
Model

Actor
Model

Stock
Cde

Produce
Sell

Manage
Produce

Sell
Manage

Info.
Stock
Order

Role

Config

Method

Software

Glossary

Info.
Model

Role

Config

Method

Transf.
tool

Meta
Model
Meta
Model

Acteur ActionActor

Compo
nents

Plan
Model
Test

Model

Info.
Plan
Goal

Info.
Model

Action
Model

Actor
Model

Reuse
Approach,
same Tools

Share
Foundation

Team

Share
Referential

Reuse
Operation
Role, Config.

Reuse
Solution Model
Black Functions
White Functions

Reuse
definitions

Reuse Maps for
Processes, Activities,
Functions, Entities...

Operations Model

Transformation Execution

Reuse Info.
Model

Share
Component
Library

Reuse
Transformation
Roles, Config

Reuse Meta
Model

08/10/2009
88

12.4 Exhibit “Togaf Technical Reference Model”

Page 42

Cross-Business Solutions
Organization Functions
(workflow,)
UI Functions
Transformation Tools

Business
Solutions

Transformation Domain:
Approach and Tools

Security Function

IT Operations

Exchange
Mechanisms

Repository for IT
Infrastructure

Solution UI and UI
components

Information
exchange Functions

Information access
Functions

UI Components

Matching Open Group TRM
and CEISAR classification

Open Group TRM

IT Operation
Infrastructure

Transformation Domain:
Approach and Tools

Togaf defines Application Platform Service Categories.
We have matched them with CEISAR Foundation Classification (in green, below).

• Data Interchange Services correspond to
o Types Functions for data and typing services, text processing Functions, Document

Processing Functions, Video and Audio Functions
• Data Management Services correspond to

o Information Mechanisms for DBMS, OO DBMS, File mgt systems, Warehousing
Functions

o UI Functions: for Screen generation Functions
o Exchange Mechanisms for Networking, concurrent access Functions

• Graphic and imaging Services correspond to
o UI Functions for graphical object mgt services, drawing services, imaging Functions

• International Operation Services correspond to
o Transformation Tools for Character sets, local language support services

• Location and Directory Services correspond to
o Organization Functions for Directory Services, service location Services,

• Network Services correspond to
o Exchange Mechanisms for Data Communication Services, remote process services
o Solutions for Electronic Mail Solutions, Video Conferencing
o Information mechanisms for Distributed Data services
o Business Functions for mailing list Functions

• Operating System Services correspond to
o OS mechanisms

• Software engineering Services correspond to
o Transformation Approach and Tools

• Transaction Processing Services correspond to
o Exchange Mechanisms

• UI Services correspond to
o UI Functions

08/10/2009
89

• Security Services correspond to
o Security Functions

• System and network Management Services correspond to
o IT Operation Solutions

• Object Request Broker Services and Common Object Services correspond to
o Transformation Approach and Tools

Most items are the same.
Some terms are different:

• CEISAR uses “Function ” rather than “Service” because a Function can be implemented or not
with software.

• Togaf uses “Service ” and sometimes “Function”
Classification is different:

• CEISAR makes a distinction between Operation Foundation and Transformation Foundation
• CEISAR makes a distinction between Solution (what is launched and used by the operation

Actor) and Function (a sub-part of Solution)

Version 9 of Togaf defines the potential re-usable building blocks, but does not describe how to Build
them.

Arismore (representing Togaf in France) has prepared a reference table to help communication between
this White Paper and Togaf9.

Foundation White Paper TOGAF 9
2.2 Foundation as a
technique to increase Synergy

Part IV. Architecture Content Framework
33. Introduction to the Architecture Content Framework
http://www.opengroup.org/architecture/togaf9-doc/arch/toc-pt4.html

3 Operation Foundation 35. Architectural Artifacts
http://www.opengroup.org/architecture/togaf9-doc/arch/chap35.html
36. Architectural Deliverables
http://www.opengroup.org/architecture/togaf9-doc/arch/chap36.html
37. Building Blocks http://www.opengroup.org/architecture/togaf9-
doc/arch/chap37.html
43. Foundation Architecture: TRM
http://www.opengroup.org/architecture/togaf9-doc/arch/chap43.html

4 Transformation
Foundation

Part VII. Architecture Capability Framework
http://www.opengroup.org/architecture/togaf9-doc/arch/toc-pt7.html
51. Architecture Maturity Models
http://www.opengroup.org/architecture/togaf9-doc/arch/chap51.html

4.1 Reusable Roles for
Transformation

35.4 Views and Viewpoints
http://www.opengroup.org/architecture/togaf9-
doc/arch/chap35.html#tag_36_04

4.4 Transformation
Engineering Tools

42. Tools for Architecture Development
http://www.opengroup.org/architecture/togaf9-doc/arch/chap42.html

3.1 Exchange and Building
Foundation

Part V. Enterprise Continuum and Tools
http://www.opengroup.org/architecture/togaf9-doc/arch/toc-pt5.html
38. Enterprise Continuum – Introduction
http://www.opengroup.org/architecture/togaf9-doc/arch/chap38.html
39. Enterprise Continuum
http://www.opengroup.org/architecture/togaf9-doc/arch/chap39.html
44. Integrated Information Infrastructure Reference Model (III-RM)
http://www.opengroup.org/architecture/togaf9-doc/arch/chap44.html

6.4 How to convince top
management?

24. Stakeholder Management
http://www.opengroup.org/architecture/togaf9-doc/arch/chap24.html
30. Business Transformation Readiness Assessment
7. ADM Phase A http://www.opengroup.org/architecture/togaf9-

08/10/2009
90

doc/arch/chap30.html

6.5 Define a Global Plan 5. Introduction to the ADM > Scoping the Architecture
http://www.opengroup.org/architecture/togaf9-
doc/arch/chap05.html#tag_06_05
7. ADM Phase A http://www.opengroup.org/architecture/togaf9-
doc/arch/chap07.html
Part III. ADM Guidelines and Techniques
http://www.opengroup.org/architecture/togaf9-doc/arch/toc-pt3.html
18. ADM Guidelines and Techniques – Introduction
http://www.opengroup.org/architecture/togaf9-doc/arch/chap18.html
19. Applying Iteration to the ADM
http://www.opengroup.org/architecture/togaf9-doc/arch/chap19.html
20. Applying the ADM at different Enterprise Levels
http://www.opengroup.org/architecture/togaf9-doc/arch/chap20.html

7 What is a good
Foundation?

Part V. Enterprise Continuum and Tools
http://www.opengroup.org/architecture/togaf9-doc/arch/toc-pt5.html
38. Enterprise Continuum – Introduction
http://www.opengroup.org/architecture/togaf9-doc/arch/chap38.html
39. Enterprise Continuum
http://www.opengroup.org/architecture/togaf9-doc/arch/chap39.html

8.4 Quality and experience
of Foundation architects
8.5 Foundation Customer
is required

52. Architecture Skills Framework
http://www.opengroup.org/architecture/togaf9-doc/arch/chap52.html
47. Architecture Board http://www.opengroup.org/architecture/togaf9-
doc/arch/chap47.html
48. Architecture Compliance
http://www.opengroup.org/architecture/togaf9-doc/arch/chap48.html
49. Architecture Contracts
http://www.opengroup.org/architecture/togaf9-doc/arch/chap49.html
50. Architecture Governance
http://www.opengroup.org/architecture/togaf9-doc/arch/chap50.html

8.7 Planning for a
Foundation approach
8.8 Foundation life cycle

Part II Architecture Development Method
http://www.opengroup.org/architecture/togaf9-doc/arch/toc-pt2.html

9.3 Which Governance? 47. Architecture Board http://www.opengroup.org/architecture/togaf9-
doc/arch/chap47.html
48. Architecture Compliance
http://www.opengroup.org/architecture/togaf9-doc/arch/chap48.html
49. Architecture Contracts
http://www.opengroup.org/architecture/togaf9-doc/arch/chap49.html
50. Architecture Governance
http://www.opengroup.org/architecture/togaf9-doc/arch/chap50.html

10 What does Foundation
become when using
Packages?

39. Enterprise Continuum
http://www.opengroup.org/architecture/togaf9-doc/arch/chap39.html

12.4 Exhibit “Togaf
Technical Reference Model”

43. Foundation Architecture: TRM
http://www.opengroup.org/architecture/togaf9-doc/arch/chap43.html
44. Integrated Information Infrastructure Reference Model (III-RM)
http://www.opengroup.org/architecture/togaf9-doc/arch/chap44.html

12.5 Exhibit "Sharing" is not
Reuse
12.6 Exhibit “Complement to
Operation Foundation”

41. Architecture Repository
http://www.opengroup.org/architecture/togaf9-doc/arch/chap41.html

12.7 Exhibit "Sharing
Operation Resources"
12.9 Exhibit "Sharing
Transformation Resources"

40. Architecture Partitioning
http://www.opengroup.org/architecture/togaf9-doc/arch/chap40.html

08/10/2009
91

12.5 Exhibit "Sharing" is not Reusing

Page 43

Sharing Resources

Sharing Units Sharing IT
Infrastructure

Sharing
Information

Operation Share HR,
Procurement, IT
Operation... Units

Share IT Operation
Infrastructure

Share Operation
referentials like
Customer file,
Organization file...

Transformation Share Foundation
Unit

Share IT
Transformation
Infrastructure

Share
Transformation
referentials:
metrics, component
repository...

Solution Classification
Mixing Reusing Solution Models and Sharing Resources allows classification of Solutions according to
the following table.
It helps, for example, to identify what is different between:

• B3: “Cloud Computing” means “develop specific Solution” but “let the provider Operate the
Solution in the Cloud”

• C2: “SAAS” means “Reuse a Pre-Built Solution Model” and "let the provider Operate it for
different Enterprises".

08/10/2009
92

Page 44

Operation

Model

A-Operated only
for me and by
me

B-Operated only
for me and by
others

C-Operated for
all and by
others

1-External
Solution Model
with no
adaptation

Ex: Excel Amadeus, Swift,
Darva, Google
Apps

2-External
Solution Model
with
adaptations

Ex: SAP Ex: SAP
Operated by an
external
company

SAAS like
external Payroll
Service

3-Specific
Solution Model
internally built

Develop a
Specific Solution
and Operate it

Externalized IT
Operations,
Cloud Computing

Solution Classification

For a Standard Company which is not a Software Edit or.

08/10/2009
93

12.6 Exhibit “Complement to Operation Foundation”
For some Operation Foundation elements, we here give more detailed information, useful when an
Enterprise is in the process of Building Foundation.

12.6.1 Reuse Access mechanisms to Information
Each Information Access Function must be Built by Reusing powerful Access Mechanisms which
lighten the task.
To give some examples:
• Ability to change DBMS (Oracle, DB2, SQL Server...) without rebuilding the Solution.
• To be as close as possible to Business analysis, offer capacity to access a Business Object rather

than a Table: one implementation is to use OQL as a standard language to access Objects and store
them in a standard relational database. It requires a mapping Function to be able to switch Business
Objects to Tables.

• Every Business Object has an identifier: Customer id, Contract id, Account id…Using a universal
identifier for any instance, allows reusing of same mechanisms for Relations between Objects. Using
this universal identifier does not prevent us from also keeping business identifiers used by Actors.

• Manage Versioning : identify the successive images of the same Object; manage historic evolutions,
list and present successive versions of the same Object, compare different versions of the same
Object, offer versioned relations between Instances…

• Navigation through relations : offer mechanisms to navigate from one Object to another through
Relations, like from “Customer” to its “Contracts”, from each “Contract” to “Delivered Services”...

• Dynamic Attributes : availability for non IT actor to define a new attribute, modify data model, modify
UI, make the new Attribute available for Rule Engine

• Business Transaction mechanisms: provide a Business Transaction Mechanism which reuses the
DBMS transaction mechanism, and allow application of Business Transaction:

o for different DBMS,
o on different Servers,
o Transactions of Transactions

• Replication Mechanism: provide reusable mechanisms to replicate creations or modifications of
Instances copied on different Servers; subscription, identification of modifications and what must be
sent, applying modification to each data base

12.6.2 Reuse Access Functions to Information
Each industry is defining its own Information Model

• ACORD (http://www.acord.org/home/home.aspx), for US Insurance or EEG7
(http://www.eeg7.org/) for European Insurance

• CIM (Common Information Model) from DMTF (Distributed Management Task Force, Inc): for
Electricity and Utility see http://www.dmtf.org/standards/cim/

• IEC 61968 for Electric Utilities
• OAGIS: the Open Applications Group Integration Specification (OAGIS) is an effort to provide a

canonical business language for information integration. It uses XML as the common alphabet for
defining business messages, and for identifying business processes (scenarios) that allow
businesses and business applications to communicate. Not only is OAGIS the most complete set
of XML business messages currently available, but it also accommodates the additional
requirements of specific industries by partnering with various vertical industry groups (see
http://www.ibm.com/developerworks/xml/library/x-oagis/)

• Telco SID for the Telco industry

Some Providers have defined and sell a Model for specific Industries.
For example IBM provide IFW for the Financial industry
http://www-03.ibm.com/industries/financialservices/us/detail/component/I803938H46550Z52.html

Most of these industries use Cross-Business Information like:
• Actor : Person, Legal Entity, Computer

• Reuse the same Model for Persons, Legal Entities and Computers.

08/10/2009
94

• Provide components to define their Roles: customer, partner, provider ...
• Address : provide a Component to manage Postal Address, email, telephone number, type or class,

presentation, checks...
• Third Party Account : provide a Model for Bills, Payments, Accounts and Accounting Lines
• Organization : provide a reusable Model

• for Organization Units (direction, department, division, branch...),
• their hierarchy,
• up to Position (the smallest Business Unit where a single Person may be assigned)

• Actor Profile : provide a reusable Model for Actor Profiles: to store Rights and Duties.
• Operation IT description : provide a single Model to describe Computers, network, software

configuration, data localization
• Location and Facilities : a single Model to describe Locations and facilities (Building, Offices,

factories...)
• Product : provide a single Product Model.

• Goods Products in Industry are broken down into parts: this is “parts nomenclature”
• Services Products in the Service Business are broken down into “component nomenclature”

(benefits, check Rules, Pricing Rules...)
• Contract : provide a Contract Model which is reusable by all Solutions; can be a reusable Contract

header which is reused by all Contract entities

12.6.3 Reuse Exchange Mechanisms between Solutions
Generally these exchanges are classified into 3 categories:

• synchronous question-answer: to read information owned by another Solution or execute a
Function which does not modify Information (like “compute a price”)

• synchronous update: to update Information owned by another Solution
• Asynchronous feed: when a Solution delivers inputs to another Solution

Each Exchange must be Built by Reusing Exchange Mechanisms like: Routing, conversion (using
XML, PDF, flat file, mapping…) which are provided by Middleware suppliers.
Reusing the same Middleware helps Reuse of Functions.
It must be open to external reusable Functions.
It must be available on all servers.

OSOA initiative (http://www.osoa.org/display/Main/Home)
The Open SOA Collaboration represents an informal group of industry leaders that share a common
interest: defining a language-neutral programming model that meets the needs of enterprise developers
who are developing software that exploits Service Oriented Architecture characteristics and benefits. The
Collaboration is not a Standards Body; it is a set of vendors who wish to innovate rapidly in the
development of this programming model and to deliver Specifications to the community for
implementation. These specifications are made available to the community on a Royalty Free basis for
the creation of compatible implementations. When mature, the intent is to hand these specifications over
to a suitable Standards Body for future shepherding.

12.6.4 Reuse Exchange Functions (the “Adapters”)
Examples of Adapters:
• Adapter to feed General Ledger
• Adapter to feed third party accounting
• Adapter to feed Business intelligence
• Adapter to feed Log, audit trail
• Adapter to feed email, SMS Solution
• Adapter to feed Word, Excel, Acrobat
• Adapter to feed Imaging Solution
• Adapter to feed Archiving Solution
• Adapter to feed Printing Solution
• Adapter from call Centers to feed Back Office Solutions

08/10/2009
95

• ...

Some suppliers provide “Adapters” to most well known Packages like JDEdwards, EnterpriseOne, SAP
Software, Oracle E-Business Suite, Siebel Business Applications, PeopleSoft Enterprise.

12.6.5 Reuse User Interface Components
We here list some pre-built UI elements which can be Reused by composition or inheritance.

Standard look and feel
Documentation of UI standards which must be applied to all Solutions.

UI elements
Use inheritance and composition to Build new User Interfaces from reusable UI elements

Desktop
Present Entry Points to Activities in one desktop tree.
It must be possible to adapt Desktop content to current user profile

Navigation
Navigation standards implemented through components to go from one Business Object to another, to
select choice, to cancel actions…

Type Presentations
Define standard presentations for reusable Types like date, amount/currency, address…

Tree, Folders
Present Trees and Folders.

Multi-Language
Allows reuse of the same Solution with a different language and different character sets.
Can be defined at deployment time or dynamically, according to Actor choice.

Search on Object (Picker)
All Solutions require to search for Objects. The "Picker" is a reusable Component for any search which
defines:
-search criteria,
-instance list presentation (which columns)
-authorized Action on the selected instance

Alert and warning
Generate Alert: display alert and propose answers

Comments on what really works today
Look and feel standards exist in most Enterprises.
But UI Elements do not exist: User Interface Building is still a specific task with no Reuse.

12.6.6 Reuse Organization Functions
Examples of Organization Functions:
Task Basket
Provide reusable Functions to manage list of Tasks by Actor:
-generate a Task
-list past or future Tasks by Actor or Team
-launch the right Activity from each Task

Workflow

08/10/2009
96

Provide reusable Functions to manage assignment of Activities inside a Process:
-define next Activity
-assign next Activity to the right Actor

Security
Provide a single sign-on: identification and authentication.
Provide a reusable authorization Function?
Provide a Function to warn the manager?

Calendaring and scheduling Functions
Provide a Function like “Update a calendar”.

Business Auditability
Mechanisms to retrieve business source information

Calendaring and scheduling Services
Provide a reusable Function to update a Calendar.

Comments on what really works today:
• Single sign-on is in place or will be in the near future in most Enterprises.
• Security Functions: they exist in all Enterprise, but very few Enterprises have a unique Security

Function
• Workflow Functions exist in some Solutions, but are never generalized as a unique Reusable

Function for all Solutions

12.6.7 Reuse Business Functions
Cross-Business Functions are the same for all Business domains like:

• Bill: Provide a reusable Bill generation Function, manage Bill Setup
• Manage third party account: Generate Accounting Entry, Update Account
• Electronic Payment: provide a Function to execute payment
• Get Customer Summary: provide a Function to present a Customer summary
• Generate Contact: provide a reusable Function to generate a Contact (when, who, content, next

step...)

Model Solutions which allow different Organizations thanks to Foundation
This Topic was developed in a former white paper.
The main idea is that we should not develop a new Solution each time we implement a new
Organization, like launch a new distribution channel, or decentralize back office Activities.
We should rather Reuse the same Solution Model and

• externalize assignment of Activities to Actors
• isolate User Interface when it has to be adapted to the communication channel.

Reusing the same Solution Models for different Organizations will decrease the number of Solutions but
it requires that the Solution Model follows rules described in former white papers:

• analyze Business Process before Organized Process : split Business Functions that are
always necessary from Organization Functions which depend on current organization

• Build Organization Functions which are Reused by all Solutions : Security Function,
Assignment Function, To-Do list Function…

• Externalize assignment of Activities to Actors through Workflow Engine using Profiles of
Rights and Duties

Foundation is crucial to succeeding in such an approach: it isolates Business Functions and provides
Organization Functions.

Some Providers document case studies:

• see IBM : http://www-01.ibm.com/software/success/cssdb.nsf/topstoriesFM?OpenForm&Site=soa
or http://www-
01.ibm.com/software/success/cssdb.nsf/advancedsearchVW?SearchView&Query=%5BWebSiteProfileList

08/10/2009
97

TX%5D=soa+AND+(soa)+AND+%5BCompletedDate%5D%3E01-01-
2002&site=soa&cty=en_us&start=1&count=10

12.6.8 Reuse Solution Models
First set of Reused Solution Models is related to Reusable Functions .
Building a Reusable Function is not always sufficient. If the Reusable Function requires its own specific
Information to be executed, then it is also necessary to Build the Solution which manages this context
information.

Page 45

Solution Interface

Implementation

Function
Context

(parameters, rules)

Solution to Manage
Function Context

Reusable Function

How to call the
Function when
Transforming

Delivers the
Functionnality

Example:
•Security
•Desktop
•Workflow
•Type
•Product Factory

A reusable Function may require a Solution
to manage its context.

For Reusable Function Offer a Reusable Solution
Authentication Function Manage Users identifier and passwords
Authorization Function Manage Profiles of Rights
Assign an Activity to an Actor Manage Profiles of Duties based on Functional

Domain, territory...
Text processing, spreadsheet processing
Functions

Office automation Solutions like Word, Excel

Create an Image and Retrieve it Imaging Solution
Send a Message, an SMS Email Solution
Call an Actor on the phone Phone Solution
Generate a Contact Contact management Solution
Scan, store, attach and retrieve an image Imaging Solution
Compute Price Manage tables of pricing parameters and Rules
Compose a document Document management Solution
Print a document Printing Solution
Transform a Zip code into town Manage mapping between Towns and Zip Codes
Find the currency of a country Manage mapping between Currencies and

Countries

Some Solution Models may also be reusable because requirements are the same for different
companies:

• Collaborative Solutions
• Call Center Solutions
• Build and present a Customer Summary

08/10/2009
98

• Product Factory: to allow Business Actors to directly assemble new Service Products without IT
involvement

• HR Solution
• Procurement Solution
• Accounting Solution
• BI Solution

For each Function, must be defined:

• Function Interface: how to call it
• Function Implementation: how it is Built
• Function Context: Information related to the Function
• Solution to manage the Function Context (parameters and Rules).

08/10/2009
99

12.7 Exhibit "Sharing Operation Resources"
Reusing the same Operation Models allows us to Share Operation resources.

12.7.1 Sharing Operation Units or Centralizing a Bu siness Unit
As explained before, Reusing the same Model does not prevent each Company of a Group from being
independent: Model definition is centralized , but Resources which operate this Model are
decentralized. The key idea is that reusing the same Model brings consistency.

In a Group of several Companies, top management may think that centralizing HR, Procurement and
Financial Control Resources ... is more efficient for different reasons:

• Economies of scale
• Expertise is rare
• Top Management wants to directly manage certain domains

To Share a unique HR Unit which works for the Group:

• the same HR Model is imposed on all Companies
• this unique Model is Operated by a single centralized team

Organization Maps are provided to describe Organization of Units.
These Maps are not Model Maps like the ones described above: they just describe Human Actor
Resources.

12.7.2 Sharing IT Infrastructure for Operations
The same principle may be applied for IT Infrastructure.

• decentralized IT Operations : the same IT Configuration Model is Reused (same OS, same
hardware), but each Company Operates its own IT Infrastructure

• centralized IT Operations : the same IT Configuration Model is Reused, and all IT Operation
Units are Centralized in a single Unit managed by the Group

When IT Operation Infrastructure is complex, Maps f or IT Infrastructure are provided to present
Servers, Work Stations, the network, and localization of data on servers.
These Maps are not Model Maps like the ones described above: they just describe Enterprise
Resources and not Enterprise Model. They are not part of Foundation.

12.7.3 Sharing Operation Information
Information Repositories (or Master Data) can be Shared by the different Solutions.
Examples: Customer data base, Enterprise Organization, shared nomenclatures such as:

• Functional domains
• Territory
• Zip Codes and Town
• Reusable Profiles
• Accounting Nature
• Product Domains
• Customer Segments
• Countries, Currencies

Each time Information is Shared, it must have an owner: if several owners are necessary for a single
data base, define how to identify this owner (Attribute in the Object or external rule).
Sharing can be at Group level or Company level.
To give an example, Air France decided to Share the Flight Repository which is used by many Solutions,
but had difficulties in deciding who should be the owner of the Information.

A detailed classification has been defined by the CEISAR in an Excel spreadsheet reserved for
Sponsors.

08/10/2009
100

12.8 Exhibit "Complements to Transformation Foundat ion"
12.8.1 Transformation Engineering Tools

Transformation tools cover the full cycle: not only programming, but also specifications, Map modeling,
design, tests, integration…
Many different tools can be reused in Transformation Processes such as:
• Enterprise Modeling: Solution Map, Entity Map, Process Map, Function Map
• Process Building and Workflow engine
• Software Design
• Software development
• Software debugging tool
• Integrated Rule Engine
• Workflow Engine to assign Activities to Actors
• User Interface Building tools
• Information Access Building tools
• Portal Building tools
• Multi Enterprise mechanisms: language, currency…
• Solution Interface Building tools
• Migration tools
• Tools to retrieve Foundation elements
• Multi team work
• Test Automation tools
• Software quality analysis
• Tuning Tools
• Reporting Configurator
• Business Intelligence Tools
• Prototyping tools
• Software Configuration Tools
• Solution Integration tools

12.8.2 Multi language
As Solution Models are increasingly used as Multi-Country Models, the Model must adapt to different
languages.
We suggest the following rules:

• Build a dictionary of translated words
• Verify each individual Window: translation is automatically applied from the dictionary, but a human

check is necessary: several translations may exist for same word, some translated words can be
longer and require rearrangement of the windows

• Printing adaptations are done by the editing product
• For Enumerated Types like “single, married, divorced” offer a Type translation to translate once only
• Propose to rename class name and attribute names
• User messages: break them down into standard messages (“the information <attribute name> is

required”) and reuse class name or attribute name
• Inheritance of windows eases translation

08/10/2009
101

12.9 Exhibit "Sharing Transformation Resources"
When Transformation Models are Reused by different Companies of a Group of different Teams in a
Company, it becomes possible to Share Transformation Resources such as: Transformation teams, IT
Infrastructure, repository for Operation Foundation, or Metrics for Transformation,

12.9.1 Sharing “Foundation teams”
A Solution Team prefers to contact only one Foundation Team. First recommendation is to Merge all the
teams which take care of “Common good” into one Fou ndation team .
When this is done for each Company of a Group, it is possible to merge different Company Foundation
Teams inside a unique Group Foundation Team if they are working on the same topics so that they do
not duplicate work.
Foundation must be managed as a whole because

• its clients, the Solution Builders, prefer a unique contact for all Foundation problems rather than
different teams such as Technical Architecture team, SOA Team, Methodology team, quality
team, security team, Repository or Master data Information team.

• Foundation Reuses Foundation : integration of Components must be done once by the
Foundation team and not by each of the Solution teams

It means that there exists a unique Foundation portfolio with a unique Governance Process to make
decisions on Foundation Projects.
The Foundation team must be split into 2 activities:

• Foundation Building : they Build/Buy components and assemble them to offer a simple interface
to Solution Builders

• Foundation Support : they train, coach, control Solution Builders
What works today?
Most Foundation Topics are today managed by different teams: methodology team, technical
architecture team, SOA team, Repository team, quality team, security team…

But split Group level from Company level
Most of the visited Enterprises have defined Foundation teams (often called “Architecture Team”).
In large Groups, Foundation teams may exist at different levels:

• Group Level : indispensable if the Group is centralized (like an Airline Group), but can also be
useful for a decentralized Group which requires acceleration of its Transformation speed or
reduction of its Transformation costs. Generally they split Group Solution Modeling and Group
Foundation Modeling. They define IT technical standards, some basic Functions (as single sign-
on, single security function), and Transformation approach

• Company Level : each company owns its own Foundation team which must Reuse the Group
Foundation and add what is specific to the Company.

• Business Unit level: sometimes, in large companies, a single Business Unit defines Reusable
Models for its own use.3 levels for Foundation are difficult to manage and synchronize.

12.9.2 Sharing IT Infrastructure for Transformation
Transformation IT infrastructure may also be centralized for all Transformation teams: the set of
Servers, work-stations, printers, networks which are used by Transformation teams can be Shared.
It may bring savings and provide easier Foundation updating.
It requires that the same IT Model is reused by all Transformation teams.

12.9.3 Sharing Transformation Information
Solution Builders must find elements of Foundation which help them to Build Solutions: a repository of
all these Foundation elements is required.
For each element, it must include:

• what the delivered Functionality is
• how to use it.
• who the owner is

It does not include the implementation of each element.

08/10/2009
102

If Engineering tools do not automatically Build this repository, it is the role of the Foundation Support
team to organize it.

Transformation Actors can also share Transformation metrics:

• metrics for Engineering (Configuration evaluation: size of servers, network throughput)
• or metrics for Management to evaluate Project workload and Build Project Planning (workload

estimates

08/10/2009
103

12.10 Exhibit “How to make Decisions”

Page 46

Define Enterprise Goals

Enterprise
Goals

Productivity

Good Service
•Reactivity
•Quality
•Comfort
•Global Service

Better
decision
making

Agility :
enhanced

differentiation
via timing

Globally
deploy best

Products and
Processes

Page 47

Enterprise
Challenge: How to?

Reduce
Operation

Complexity

Share and
aggregate

Information

Reduce
Transformation

Complexity

Develop
Business
Synergy

Which Enterprise Challenges to reach Goals?

Move from
Commodity to
Competitive

Solutions

Enterprise
Goals

Productivity

Good Service
•Reactivity
•Quality
•Comfort
•Global Service

Better
decision
making

Globally
deploy best

Products and
Processes

Agility :
enhanced

differentiation
via timing

08/10/2009
104

Page 48

Enterprise
Challenges: How to?

Build
Competitive

Solutions

Reuse
Foundation
Models +
Configure

Std usage

Apply
Cooperative
approach to

Solution
Projects.

Less to do

MDM
(Clt, Product)

Insert the Solution
into Enterprise

Model

Single Entry

Solution Portfolio
decisions

Choose the right
Solution Projects

Reuse
Solution Models

Building Solution Models to address
Enterprise Challenges

Iterative

Enterprise
Goals

Productivity

Good Service
•Reactivity
•Quality
•Comfort
•Global Service

Better
decision
making

Globally
deploy best

Products and
Processes

Get less
Operation

Complexity

Share and
aggregate

Information

Get less
Transformation

Complexity

Develop
Business
Synergy

Move from
Commodity to

Evolving
Solutions

Agility :
enhanced

differentiation
via timing

Page 49

Enterprise
Challenges: How to?

Build
Competitive

Solutions

Reuse
Foundation
Models +
Configure

Std usage

Apply
Cooperative
approach to

Solution
Projects.

Less to do

MDM
(Clt, Product)

Bus/IT
alignment

Operation
Foundation

Offer and Support
Reusable Models

Offer and support
the Target

Enterprise Model

Insert the Solution
into Enterprise

Model

Transformation
Foundation

Offer a Solution
Cooperative

Approach and Tools

Offer an Enterprise
Modeling Approach

and Tool

Single Entry

Solution Portfolio
decisions

Choose the right
Solution Projects

Foundation Portf.
decisions

Choose the right
Foundation

Projects

Reuse
Solution Models

To Build good Solutions, deliver good Foundations

Define EA
Governance

Iterative

Enterprise
Goals

Productivity

Good Service
•Reactivity
•Quality
•Comfort
•Global Service

Better
decision
making

Globally
deploy best

Products and
Processes

Get less
Operation

Complexity

Share and
aggregate

Information

Get less
Transformation

Complexity

Develop
Business
Synergy

Move from
Commodity to
Competitive

Solutions

Agility :
enhanced

differentiation
via timing

08/10/2009
105

Page 50

Enterprise
Challenges: How to?

New EA Policy

Build
Competitive

Solutions

Everything starts from clear executive decisions.

Reuse
Foundation

Models+
Configure

Std usage

Apply
Cooperative
approach to

Solution
Projects.

Less to do

MDM
(Clt, Product)

Iterative

Bus/IT
alignment

Operation
Foundation

Offer and Support
Reusable Models

Offer and support
the Target

Enterprise Model
Insert the Solution

into Enterprise
Model

Transformation
Foundation

Offer a Solution
Cooperative

Approach and Tools

Offer an Enterprise
Modeling Approach

and Tool

Define EA
Governance

Create team and
budget to
Construct

and Support
Foundation

Single Entry

Enterprise
Goals

Productivity

Good Service
•Reactivity
•Quality
•Comfort
•Global Service

Better
decision
making

Solution Portfolio
decisions

Choose the right
Solution Projects

Foundation Portf.
decisions

Choose the right
Foundation

Projects

Globally
deploy best

Products and
Processes

Reuse
Solution Models

Define
Transformation
Organization

Get less
Operation

Complexity

Share and
aggregate

Information

Get less
Transformation

Complexity

Develop
Business
Synergy

Move from
Commodity to
Competitive

Solutions

Agility :
enhanced

differentiation
via timing

