

03/10/2007 1/49

White Paper
“Simplify Legacy Systems”

Abstract .. 2
1 Present Status and Objectives .. 4

1.1 Define Enterprise System Scope .. 4
1.2 How to Measure Present Complexity? .. 6

1.2.1 Complexity of the Business System .. 7
1.2.2 Complexity of the Organization System ... 7
1.2.3 Complexity of the IT System .. 8
1.2.4 Measure Architecture Level ... 8

1.3 How does Complexity Impact the Business? .. 9
1.4 Why are IT Architectures so Complex? .. 10

1.4.1 On the Demand Side ... 10
1.4.2 On the Supply Side ... 11

2 How to Get There? .. 12
2.1 An Example: Credit du Nord Simplification ... 12
2.2 CEISAR Simplification Process .. 13
2.3 Globally Describe the Old System which Must be Simplified .. 14
2.4 Describe the New Enterprise System ... 15
2.5 Decide which Blocks to Keep, Transform or Replace ... 18

2.5.1 Refine Scope with Propagation ... 19
2.5.2 Deciding to Keep, Transform or Replace a Block .. 20

2.6 Describe Governance ... 21
2.6.1 Strategic Governance .. 21
2.6.2 Project Governance ... 22

3 How to implement? .. 23
3.1 Isolate Scope ... 23
3.2 Apply Transformation Strategy ... 26
3.3 Apply Replacement Strategy .. 30

3.3.1 Replacement Process ... 30
3.3.2 Big Bang Approach ... 35
3.3.3 Parallel Execution ... 36

4 Questions .. 40
4.1 Extension of an Existing System? .. 40
4.2 What if Different Entity Model? ... 42
4.3 What if Output Blocks First? ... 43
4.4 What if Block Structure is different? .. 44
4.5 What About Conversion? .. 44
4.6 What About Data Replication?.. 44
4.7 Parameters and Rule Engines? .. 45
4.8 Which Middleware and Tools?.. 46

5 Case Studies Abstracts ... 48
5.1 Axa ... 48
5.2 BNP Paribas ... 48
5.3 Michelin .. 48
5.4 Total ... 49

03/10/2007 2/49

Abstract
This white-paper is made of five chapters and is inspired by five case studies conducted with CEISAR’s
sponsors (Axa, BNP Paribas, Michelin and Total).

Chapter 1 deals with measuring complexity and its impact on the business.
Chapter 2 proposes a method to conduct legacy simplification projects.
Chapter 3 proposes a process to actually implement legacy simplification, through Transformation or
Replacement.
Chapter 4 answers frequently asked questions about legacy simplification.
Chapter 5 is a short abstract of the case studies that have been conducted to write this white-paper.

Chapters 1, 2 & 5 can be read by any IT executive (CIOs, Architects, Business people), while chapters 3
& 4 are targeted towards more technical people (Architects, Project leaders, Engineers) involved into
legacy simplification.

Measuring Legacy Complexity and its Impact on Business

As they grow older, legacy systems become more complex with a negative impact on the business:
decreased agility, decreased quality of service, decreased ease of use, increased costs and
increased risk due to loss of knowledge.

To simplify your System, define your Enterprise System scope and simplification rationale with offensive
(reduce time-to-market, offer new Functions…) and defensive (replace old technology…) objectives.
Choose between different execution strategies (mandatory, self-standing, opportunistic or architecture
renewal program).

To justify the need for simplification, measure complexity and measure how it impacts the business.
Complexity comes from the Business System, Organization System and IT System.

 Business System complexity can be measured by the number of Business Entities, Business
Processes and Business Functions and by volumes (data and process instances).

 Organization System complexity can be measured by the ratio of Organization Processes over
Business Processes, Activities over Processes and Organization Functions over Business
Functions, and by the number of actors.

 IT System complexity can be measured by the number of assets (hardware, software,
middleware), number of interfaces, databases, tables, number of operations and development
technologies, and by system and static code analysis.

Complexity can be reduced by a good architecture and architecture level and quality should be
measured as well, but there is no established framework for that. Nevertheless CEISAR proposes tracks
of what could be an architecture level evaluation: common Business Processes and Functions, Common
Organization Functions, Common Software Services, Shared Block Cartography, Level of parameterized
settings…

Proposing a Method to Simplify Legacy Systems

Once the framework has been set to justify the need for simplification, CEISAR proposes a method to
simplify legacy systems:

 Describe the old System
Old Enterprise System, Block Cartography and Technical architecture.

 Describe the new System
New Enterprise System, new Block Cartography and Technical architecture.
Explain how they relate to the simplification objectives.

03/10/2007 3/49

 Decide which blocks to keep/transform/replace
Based on Block interdependence, refine the scope to take into account propagation.
Based on Block decomposition and Block evaluation (with respect to complexity and old/new
Enterprise System gap analysis), choose between keeping, transforming or replacing each
Block.

 Define simplification Governance
For strategic governance, set-up a small governing body with business people, have
metrics and dashboards, train IT people, enforce architecture committees and empower
domain managers
For project governance, keep the subject on the steering committees agenda, choose
simplification ordering logically if possible (input blocks first), but favor progressive phasing
with landing points and intermediary business benefits.

Proposing a Process to Implement Transformation and Replacement

To actually deliver simplification, CEISAR describes in more details two simplification strategies: the
Transformation Strategy and the Replacement Strategy.

 First, Isolate the blocks that are within the scope from those which are outside. This should be
done with minimum impact on the blocks outside of the scope, to avoid scope propagation.

 For Transformation:
- Build Data Access Services and reengineer blocks to use them; migrate data
- Isolate reusable Business Functions and expose them as Software Services
- Re-interface blocks and remove dead parts

 For Replacement:
- Replace block but maintain ascending compatibility in the interfaces (which implies maintaining

some legacy constraints during a transition phase)
- Upgrade peripheral blocks to use the new interfaces
- Renew peripheral blocks themselves to achieve full simplification

Choose between two execution approaches:

- In the Big-Bang approach, migration is easier and faster but transition is more brutal and
must be thoroughly prepared. It requires precise understanding of the functions of the
legacy and proper testing with a pilot phase on a product or organization subset of the
Enterprise.

- In the Parallel Execution, the new System runs in parallel and in sync with the old System
during a transition phase. It requires great care in the architecture and costs more but
reduces risk, improves progressiveness and often allows earlier business benefits

Answering Frequently Asked Questions

Finally, the white-paper answers frequently asked questions:
- How do you extend an existing System and expose Services?
- How do you handle Entity Model changes?
- How do you modify Block Structures?
- How do you deal with data replication?
- Which middleware and tools can be useful?

03/10/2007 4/49

1 Present Status and Objectives
Legacy Systems have been built progressively by successive add-ons.

As for any complex system, entropy increases with time, and comes a time when the Legacy Systems
deserve to be simplified.

When the IT system is composed of tens of thousands of programs, consistency becomes a crucial
problem: checking that a modification in a Block will not impact other Blocks can cost much more than
the modification itself. This is why so many IT departments spend more than 70% of their energy just
maintaining legacy systems.

Example: BNPP in France manages about 400.000 parts (piece of code, data description, JCL, …) in its
IT System.

But simplification can be a huge investment. To be sure that it is really useful, we must:

 Define the global Enterprise System scope

 Measure complexity of the Enterprise System

 Measure how complexity impacts the business

 Measure how much it costs to simplify the System.

 Measure ROI before making a definitive decision, and define scope of Blocks to simplify

The Global Process to decide to simplify an Enterprise
System

Measure

Enterprise System

complexity

Measure

how complexity

impact Business

Define

simplification

scenarios

Measure

cost for

each Scenario

Make a decision

and refine ES scope

Define

Enterprise System

scope

Value Cost

Means « Start

simplification process »

described after

Figure 1: Global process to decide simplification

1.1 Define Enterprise System Scope
You first have to define what must be simplified.

03/10/2007 5/49

Even if it is difficult to describe with precision what you will simplify, you must define a rough scope
based on offensive or defensive objectives.

Offensive rationale:

 Decrease time to market for new products

 Offer new functions which cannot be delivered by present system, like vision of customer
summary, more dynamic reporting functions, …

 Give direct access to partners, prospects and customers (e-business)

 Streamline and optimize Business Processes

Defensive rationale:

 Replace old technology which will not be maintained any more

 Maintain knowledge: if legacy systems experts progressively leave the company, a big
documentation effort is required on the legacy if it is still maintainable, or a new documented
software must replace the old one

 Increase IT Service quality: reliability, time to correct a defect, response time

Scope can be built with four major execution schemes (Figure 2)

Execution Strategies

Mandatory

Discontinued technology, new regulations

- No ROI issue (must be done)

- Focus on mandatory objectives

- Minimal changes. Avoid new functions

Self Standing

Simplification can exhibit an ROI by itself

- Remediate long-lasting system with

rampant cost

- Consolidate system instances

- Phase-out expensive technology…

Opportunistic

Piggyback on large business projects

- Have clear vision of new Enterprise

Architecture

- Adapt to Business priorities (needed for

ROI)

- Share simplification objectives with

Business

Architecture Renewal

Strategic corporate program

- Profoundly improve Enterprise processes

and operations

- No ROI or commitment issue

- Scope and stakes complexity

Figure 2: Execution strategies

 Mandatory execution happens when a technology (hardware or software) is discontinued and not
supported anymore or when new regulations cannot be supported by legacy evolutions.
In this case, there is no real ROI issues: the job must be done, generally quickly (before a given
deadline at least), and one looks at minimal changes.

It is tempting to look at this opportunity to simplify further the system or to bring new user benefits. One
should be cautious going this way, as the added complexity can jeopardize the deadline for the
mandatory changes.

03/10/2007 6/49

 Self-standing execution happens when simplification itself can exhibit an ROI. It is rare when it
concerns only IT simplification because savings are usually low and lead to slow ROI while they
usually present business risks (bugs, downtime, change management).
However, targeted and tool-assisted remediation can sometimes exhibit self standing benefits when
an application or product line’s lifecycle has been extended while maintenance costs are rampant.

 Opportunistic execution happens when a business project has enough business benefits for
simplification efforts to piggyback on it. This is the best solution to find an ROI for a simplification
project, and opportunities should consequently be seized.
Opportunistic execution should always be done with a vision: the new architecture, migration and
simplification principles should be clear and thoroughly analyzed beforehand (which means efforts
must have been put on the subject independently of projects). The final simplification objective
should be accepted and committed to by the business as well as IT. Otherwise, it is very unlikely
that a sum of opportunistic simplifications leads to a real global simplification.

 Architecture renewal execution is the most ambitious. It consists in a strategic corporate
program to profoundly change and modernize the Enterprise System in order to give a key
competitive advantage to the company: support new service offerings (e-business) or processes that
will be unique in the marketplace, profoundly reduce product time-to-market, profoundly improve
operations and productivity (like in the Credit du Nord example).
Architecture renewal is a strategic move with top executive support. ROI and commitment is not
problem, but complexity arises from the width of the scope and the stakes and expectations of the
program.

1.2 How to Measure Present Complexity?
Complexity must be measured to evaluate improvements.

A general Rule is that:

 Complexity increases if too many “HAS”: too many relations in all directions, no encapsulation,
no reusability (no Block Model)

 Complexity increases if few “IS”: every product is specific (no Product model), every Process is
specific (no Process Model)

To be more precise, complexity must be measured on the 3 dimensions (Figure 3):

 Complexity of Business System: like complexity of offered products

 Complexity of Organization System: like complexity of Organization Processes

 Complexity of IT System: like complexity of Software

03/10/2007 7/49

Measure complexity of Enterprise System

Measure complexity of

Enterprise System

Measure complexity of

Business System

Measure complexity of

Organization System

Measure complexity of

IT System

Number and complexity of

•Business Entities (1)

•Business Processes

•Business Functions

•User Interfaces

Volumes for

•data and

•process instances

•Nb of Org.Proc/BusProc

•Nb of Activities/Process

•Nb of Actor Types

•Org.Functions/Bus.Funct.

•Volumes for nb of Actors

•Nb of hardware

•Nb, size of Blocks (LOC)

•Nb of Interfaces

•Nb of Tables + Attributes

•Nb of Operation techno.

•Nb of Development techno

•Pertinence of Block Carto.

•Quality of the code

•Quality of data

•Techno. Obsolescence

•Productivity ratios

1-Focus on Products and Services

Figure 3: Measuring complexity of an Enterprise System

1.2.1 Complexity of the Business System

It is very difficult to measure complexity of offered User Functions. A popular method is Function Points
evaluation based on inputs, outputs, inquiries, files and interfaces. But it is not based on Business
Processes and Business Entities, which limits the obtained value.

There is a need for a common approach to measure complexity of offered Functions. This method
should take into accounts:

 Number (of classes and not instances) and complexity of Business Entities

 Number (of classes and not instances) and complexity of Business Processes

 Number and complexity of Functions like computations (for pricing, commissions)

 Number and complexity of User Interfaces for updates and inquiries

 Volumes of Activities

The difficulty will come from:

 Entities, Processes and Functions must be listed and documented, which is not the case in most
Enterprise Systems

 Which weight should be given to each item and each level of complexity in each item?
 If 2 Entities are very similar and inherit from the same parent Entity (like similar Products): do we

count them for 1 Entity (the parent Entity), 2 Entities (the 2 sibling Entities) or 3 Entities (the
parent + the 2 sibling entities)? Same thing if 2 Processes are very similar

1.2.2 Complexity of the Organization System

Complexity of the Organization System should be based upon:

 Number of Organization Processes by Business Process

 Number of Activities by Organization Process: a small number of Activities means that the work
is done by a limited number of Actors

03/10/2007 8/49

 Number of Organization Functions compared to Business Functions: if the proportion of
Organization Functions is high, then it means that the Organization is not optimal

 Proportion of Activities done by Persons compared to Automated Agents: if many Activities are
performed by Automated Agents, then it means that level of automation is high and Organization
Complexity is low

1.2.3 Complexity of the IT System

The IT System should match the Business and Organization Systems, which means that IT complexity is
directly related to Business and Organization System complexities. But part of IT complexity may also
come from the way it was implemented, which involves architect talent.

Complexity of the IT System is measured by the number of IT assets:

 Number of hardware assets: clients, servers, networks…

 Number of software assets
o Number and complexity of Blocks (or applications/packages/programs in the absence of

Block cartography): complexity can be measured by the number of lines of codes
o Number and complexity of Interfaces: complexity can be measured by the number of

attributes and number of calling Blocks by Interface

 Number of Data assets
o Number of Databases
o Number and complexity of tables in the databases: number of attributes and relations

 Number of Operation technologies: they require as many skill sets
o OS
o DBMS
o Middleware (EAI, ETL, applications servers, …)
o Networks
o Operating toolsets (scheduling, monitoring, back-up and recovery solutions)

 Number of Development technologies: they require as many skill sets
o Development tools
o Languages
o Frameworks

And by quality indicators:

 Quality of Block Cartography and Structure (compliance with IT architecture principles: urbanism,
tier separation…)

 Quality of Code (comments, rule violations, dangerous constructions, cylomatic complexity…)

 Quality of Data (respect of integrity rules, level of recurrent manual cleansing…)

 IT Productivity indicators (average cost for developing a Function, average lead time, average
defect ratio…)

Methods (McCabe, Halstead, SEI…) and tools (See Chapter 4.8) have been conceived that help to
automatically measure complexity, maintainability, and flexibility of a software system.

1.2.4 Measure Architecture Level

Architecture Level reflects what is shared in the Enterprise System.

If the number of shared pieces increases, then the total number of pieces decreases, which also
decreases global complexity.

It would be useful to define a synthetic measure of the “architecture quality and maturity” of a legacy,
which will influence the advised strategy (Figure 4).

03/10/2007 9/49

Measure Architecture Level which decreases unnecessary
complexity

Measure Architecture

level

Measure

Business Architecture

Measure

Organization Arch.

Measure

IT System Arch.

•Common Business Entities

•Common Process Models

•Common Bus. Functions

•Shared Block cartography

•Common Soft. Services

•Common Blocks

•Common Classes

•Common Data

•Common Dev. Environment

•Common Operation Envirt

•Level of customization

done by parameters and

rule engine (1)

•Common Org. Description

•Common Org. Functions

(like Rights and Duties)

•Consistent User interface

1-Customization for Product, Organization Processes, Security, … thanks to parameters and Rule engine

Figure 4: Measuring Architecture maturity

Sharing common Software Services is key. Some people talk of “Component Reuse” or “SOA”, which
is also about reuse.

Some examples of component reuse:

 Exchange Services between Blocks: synchronous or asynchronous (like accounting entries or
decision data), updates or inquiries

 Data access to protect data evolutions from software evolutions

 Inputs

 Outputs

 Security

 Error reports

 Rule engine

1.3 How does Complexity Impact the Business?
Complexity leads to sub optimal IT systems, by driving up development and evolutions lead times, total
cost of ownership and risk of failure (lower quality).

 Decrease of Agility
 Slow evolutions: average time increases for all kind of standard modifications (from single

attribute modification to launching new Products)

 Increase of Costs: not only increase of IT costs, but also increase of all other related costs
 User costs: productivity is impacted by

 User Interface inconsistencies

 Recapturing information because of inconsistent IT systems

 Error cost because of lack of controls or asynchronous controls

03/10/2007 10/49

 IT Development costs:

 If the System is too complex, most of the energy is spent just testing how
modifications impact it. One criteria is % of man days spent on:

o Developing the new functions: requirements and analysis, design,
programming, individual tests, user documentation

o Integrating the new functions into the IT system: interfaces, software
integration, non regression tests

 If several Development Environment exist, it implies specialized teams which cannot
help each others in term of workload balance or sharing common components

 IT Operation costs: specialized operation systems means increase of costs for hardware,
software, network and operation staff

 Decrease of IT Service quality
 More complexity comes with less reliability and more time to identify where a defect comes

from
 It also comes with more difficulties to solve performance problems because it is harder to

identify where the IT energy is spent
 Enterprise System administration becomes more complex (Identification, Rights, User

interface parameters, Products definition) because IT Systems are different

 Decrease ease of Use: if user Functions are more complex
 No standard user interfaces means more difficulty for employees to move from one job to the

other in the same Enterprise
 Discontinuity because of lack of cross-blocks Processes

 Risk of lack of knowledge: an Enterprise with a complex Enterprise System depends on a small
number of people who understand this complexity. As it takes time to train new employees,
dependency may become dangerous

1.4 Why are IT Architectures so Complex?

1.4.1 On the Demand Side

 Scope of IT has exploded over the last 30 years for at least two reasons:

o Internal productivity: scope of automated activities has grown exponentially to cover
most functions in the organization

o Business opportunities: information technology can provide the foundation for new
products and services (e-economy)

 Companies evolve and increase their business process maturity: benchmarking and sharing best
practices impact the way organizations operate. Continuous improvement is key to
competitiveness. This generates demand for change in existing IT systems and creates a need
for new systems.

o For instance, after developing operational systems, companies develop monitoring and
decision support tools

o Accounting systems: several generations of systems, from custom developments to
standard packages (ERP)

 Companies adapt their strategies to optimize their competitiveness: vertical or horizontal
integration and diversification (through mergers and acquisitions), or on the contrary
concentrating on their core businesses which generates most value (through business process
outsourcing). Moreover, companies tend to open their boundaries to external partners (extended
Enterprises). IT landscapes are widely impacted by these major changes in the configuration of
the organization.

 Increasing regulatory constraints: each industry has its own set of regulations which have
greatly developed in the recent years (example of banking (Basel II), pharma (FDA CFR 21 Part
11), aerospace, automobile, …) + cross industry regulations (Sarbanes-Oxley, …). These

03/10/2007 11/49

regulations directly or indirectly prescribe the way to develop and manage IT solutions used to
support critical business activities.

1.4.2 On the Supply Side

 Moore’s law: Information Technology is a young industry. IT is still evolving exponentially after
30 years of existence. The pace of change is high and existing solutions are quickly going out of
date/obsolescing. Since we cannot replace all our existing systems each time a new generation
of technology is developed, this introduces a great variety in the portfolio of existing solutions.

o Cobol
o 3270 applications
o Client server
o ERP
o Internet

 IT expertise:
o Skilled resources have developed rapidly but remain scarce compared to the demand for

new IT systems. This results in the recruitment of under-skilled resource on some
projects which deliver sub-optimal solutions (In some cases, end users have even thought
they were able to develop their own system by themselves, which has been made
possible by the personal computer). Errors arise all along the life cycle of the solution: not
choosing the right functionality in the first place, wrong analysis, wrong conception, low
quality of code, leading to poor maintainability, high administration and operation costs,
high failure risk, low scalability, …

o IT development and operating processes have kept evolving for the last 30 years. Best
practices are slowly emerging as this industry matures. Proprietary frameworks leave
way to open standards (like IT security standards ISO 27000, CMMI, UP, ITIL or COBIT).
Hence, each generation of systems might be built and operated in a different way.

 The combined effect of the great variety of technologies and the lack of skilled resources: It
becomes increasingly difficult to maintain knowledge on all technologies. Suppliers (hardware
and software vendors, service and consulting firms) cannot maintain their investment on older
technology. This pushes all customers to turn to new technologies when implementing new
systems. The IT landscape grows in diversity. It also creates a need for technical migration
projects (with no direct business benefit), which mobilize budget and resource on initiative with
sub-optimal return on investment

03/10/2007 12/49

2 How to Get There?
As the topic is complex, let’s start with an example to identify some elements of the simplification
approach.

2.1 An Example: Credit du Nord Simplification
Credit du Nord is a French retail Bank which was losing money and required huge productivity gains.

The global objective was to:
 Deliver high service quality to customer
 Increase time-to-market
 Decrease internal staff: from 11,500 to 7,500 people

o In centralized Back Office: from 6,000 employees to 2,000
o In Branches: remain steady with 5,500 employees

The solution was to keep the Business System (same products, same customers, same Business
Processes), but deliver a new Organization System and new IT System which allowed

 to simplify Processes and help Users by standardisation and ease of use

 to transfer workload from Back Office Centres to branches close to the customer.

To simplify the Organization Processes:

 few activities for each Process, which means a minimum number of Actors for each Process
 all checks on line,
 user interface consistency,
 workflow facility

To simplify the IT System:

 one mainframe instead of 4
 huge reuse of Software Services: 50% reuse rate

03/10/2007 13/49

Define Technical

Environment

Define new Entity Model

Define and install

Operation Environment

Develop User

Interface Services

Develop Data Services and

Implementation on Old Data

Define and install

Development Environment

Offer new Inquiries

Develop Software Services: Authorization,

standard Outputs, error management

Offer new Operation Inputs

Generates Old Block Inputs

Delete code in old Blocks:

•Data entry, checks, error mgt

•Inquiries

•Replaced Data and Software Services

Replace old Blocks one by one

Develop Services

Offer new Inputs and Outputs

Transform then Replace Blocks

Credit du Nord example

Figure 5: Credit du Nord example

From this example we notice that:

 Simplification is a progressive process
 It requires a global view of the System: old System and new System
 It requires shared Services: Data Services, Software Services, Input Services and Output

Services
 It is a mix of progressive Transformations followed by Replacement when each transformed

Block is well structured
 It involves a choice of technologies

2.2 CEISAR Simplification Process
But is there a global approach which could help us find the good path and take the good decisions?

We have tried to develop a first version of this approach (Figure 6).

03/10/2007 14/49

CEISAR simplification process

1-Globally describe

the old Enterprise System

2-Describe the new Enterprise

System

3-Decide which Blocks to keep,

transform or replace

4-Describe Governance

5.1-Apply Transformation

Strategy

5.2-Apply Replacement

Strategy

5.0-Isolate scope
(prepare replacement or transformation)

Prepare

Implement

Figure 6: CEISAR simplification process

2.3 Globally Describe the Old System which Must be Simplified
Whatever the objectives you are pursuing, whether you want to value the old IT System and keep it
(modernized) or whether you want to phase it out, you will have to understand it (Figure 7).

Documentation of an old system is not easy to do because it usually has not been updated, or because
people who know it are not here anymore. Tools can help you understand your system (See Chapter
4.8).

The description of the old System must be reduced to 2 topics:

 “Which IT Services are offered to IT Users” requires describing the Business System and the
Organization System.

 Which interfaces with external IT Systems requires identifying exchanges like Data Services or
Software Services. At this stage, it is not required to detail the decomposition of the legacy
System into Blocks.

03/10/2007 15/49

Globally describe the old Enterprise System

Describe Business System

and Organization System

Value: understand what the old System does for its users.

(The new System should do at least the same).

Business and Organization separation.

Describe IT System:

global Block Cartography+

Technical Architecture

List the external Interfaces that the old System offers and

uses.

Define the Data it owns.

It is not necessary to describe with too much details

the old IT System before knowing the new IT System.

Ex: if a set of Blocks must be replaced by a package,

it is not necessary to detail old Block cartography.

Old System to simplify

Data

Data

Service

Software

Service

Data

Service

Software

Service

UseOffer

Figure 7: Describing the old System

2.4 Describe the New Enterprise System
Before defining your simplification strategy, you should globally describe the new Enterprise System
(Figure 8).

03/10/2007 16/49

Organization

Process

Activity

BusinessFunction Software

Service

Business

Organization

IT

Organization

Entity

Class Block

Organization Function

cartography

Object Data

Development

System

Operation

System

Core

Business

* **

*

*

*

Business

Process

Business

Entity

Process

Domain

*

*

**

Entity

Domain

*

**

*

*

*

*

*

*

*

*

Describe the new Enterprise System

Figure 8: Define new Enterprise System

Obviously, the new system should obey good architecture practices which can be found in the other
CEISAR white-papers. For the IT System, you should think of:

 External Block Cartography: hierarchical decomposition of Blocks and definition of exchanges
between Blocks (see Figure 9 for exchanges between 2 Blocks)

 Internal Block Structure (Tier decomposition) (Figure 10 which comes from another white paper on
“Block Structure”)

 Operations System (In particular, intermediation middleware: EAI, SOA, ESB…)

 Development System (In particular development standards for each tier…)

03/10/2007 17/49

Define Block cartography of the new System

Input

Output

Output

Input

Block A

Block B

Build the Block structure.

Identify which Block owns:

• Public Software Services

• Public Data Services

Identify which Block uses external Public Services

Data
Data

Service

Software

Service

Data
Data

Service

Software

Service

Data

Service

Software

Service

Data

Service

Software

Service

For each Block, define:

•Inputs and Outputs

•Offered Data Services and Software Services

•Used Data Services and Software Services

Figure 9: New Block cartography

Block Core

Data

Input 3

5 Tier Block Structure

Output

Process

Mgt Software

Service

In
te

rfa
c

e

Data

Service

In
te

rfa
c

e

Preparation

Execution

U
s

e
r In

te
rfa

c
e

BLOCK B

Input 2
Preparation

Execution

Input 1
Preparation

Execution

Process

data

1 Presentation

2-Navigation

3 Process Logic

4 Business Logic

5 Data Access

Figure 10: Tiered architecture

03/10/2007 18/49

When describing the different views of the new System, one should always relate them to the
simplification objectives that are pursued (See Chapter 1.3):

 How does the new Enterprise System improve agility?

o Good separation between Business Processes and Organization Processes
o High reuse rate. Simplified development environments
o Remove silos between systems and support transversal Business Processes. Support real-time

Processes
o Changing Functions are isolated from stable ones and implemented with flexible solutions (rule

engines, workflow engines)
o Modern Development Environment: integrated tools for all development steps, Object Oriented

approach, powerful features (versioning, transaction, sophisticated relations, …), reusable
Software Services

 Does it reduce Organization costs?

o Cross Processes over different IT Systems
o Workflow facilities
o No redundant data entry

 Does it reduce IT costs?

o Every thing which improves agility also decreases costs
o Reduce the number of operation technologies (OS, DBMS, Middleware)
o Simplify hardware and network infrastructure

 Does it improve the IT Service quality?

o Global simplicity
o Change process simplified and well mastered

 Does it improve the ease of use?

o Standard GUIs (portal, presentation, navigation)
o Common Functions (authorization, printing…)

 Does it improve knowledge?

o Clear structure (global Block Cartography + individual Block structure) is more important than a
specific language knowledge

2.5 Decide which Blocks to Keep, Transform or Replace
Deciding which Blocks to keep, transform or replace is a recursive process. In particular, transformation
of a Block often consists in a mix of Transformation and Replacement of sub-blocks (Figure 11).

03/10/2007 19/49

Decomposing Blocks for Transformation or Replacement

Decide if the Block must be

Kept, Transformed or Replaced

Transformed

Block

Decompose the Block

Into smaller Blocks

Block
Block

For each Block

Replaced

Can the Block

be decomposed

into smaller Blocks?

Apply Transformation

strategy

Apply Replacement

strategy

Yes No

Kept

Refine Scope with Propagation

Keep Block

Figure 11: Recursive keep/transform/replace analysis

2.5.1 Refine Scope with Propagation

When a Block outside of the scope is tied to a Block within the scope, one faces two alternatives:

- Either the Block outside of the scope can be lightly transformed to provide interfaces that the
Block within the scope can use (once transformed or replaced).

- Or the Block outside the scope cannot be transformed to provide these interfaces.

In the first case, simplification propagation is marginal as it is stopped by the light transformation of the
peripheral Block. In the second case, simplification propagation will include the peripheral Block and the
scope will need to be more heavily extended (Figure 12).

Chapter 3.1 describes techniques to avoid scope propagation.

03/10/2007 20/49

Block ABlock B

Refine scope with propagation

In
te

rfa
c
e

In
te

rfa
c
e

Block C

Block D

Block ABlock B

In
te

rfa
c
e

In
te

rfa
c
e

Block C

Block D

In
te

rfa
c
e

In
te

rfa
c
e

(Cleanly interfaced with A)

(Tied with A)

(Lightly tied with A)

(Tied with A)

(Lightly tied with A)

Initial Scope
- Only Block A is within initial scope

Propagated Scope
- Scope had to be extended to include C

- Light modifications of D also had to be included

(Cleanly interfaced with A)

Figure 12: Refining scope

2.5.2 Deciding to Keep, Transform or Replace a Block

Blocks which comply with the new Business, Organization and IT System (new Block Cartography, new
Development and Operation Environments) and have acceptable complexity levels should be kept.
Others should be transformed or replaced, based on the simplified decision map (Figure 13).

03/10/2007 21/49

How to decide Transformation or Replacement?

Transformation
Progressive improvements on existing software

structure

Replacement
Supression of an existing software structure

Asset value is strong Asset value is weak

Average or good software structure
(To document)

Bad software structure
(Do not document in details)

Knowledge exists
(Possible use of retro-documentation tools)

Knowledge does not exist

Technology is maintained Technology is obsolete

New System is a package

In-house development only

Progressivity: lower Risk Higher risk: big change for Users,

Partners, Developers, IT Operations

High global cost, but faster results and

spread-out on successive budget cycles

Lower global investment: one big

change costs less than progressive

changes

A
d

v
is

e
d

 W
h

e
n

P
ro

p
e
rt

ie
s

Figure 13: Decision map for transformation vs replacement

2.6 Describe Governance
Proper Governance is key in legacy simplification programs. Simplification is a long journey which is
made difficult by all the ongoing events: new projects, new urgent needs for evolutions, urgent
corrections, etc.

2.6.1 Strategic Governance

Set-up a small governing body to follow simplification, preferably with people who have operational
responsibilities, and not only architects (project managers, business analysts, etc.). It should even
include business people so that they become familiar with the process, and see their business benefits
(ultimate benefit is business agility). Best people should spend more time to build or improve solutions
than checking what it is done by others.

Have metrics to make sure you stay on course. Having simplification metrics on your IT strategic
dashboard, or on each project dashboard increases your chances to reduce complexity.

Reducing complexity should be a state of mind of all IT professionals. It requires appropriate change
management techniques. Train IT people to integrate this state of mind.

Except for companies whose enlightened business leaders have grasped the criticality of having an
optimized IT architecture asap (and mobilized their entire IT workforce on it), reducing complexity is
seldom a priority.

A tactical solution is to include the following rule in your governance framework: each major project
should devote a minimal % of its budget to simplification of the existing IT landscape.

An alternative is that each project goes before an Architecture Committee where it must explain
(among other things) how it makes the Enterprise System simpler in the end (possibly showing actual

03/10/2007 22/49

complexity metrics before the project and projected complexity metrics after the project has been
delivered).

If the Information System is organized by Business Domains, the domain managers (Business and IS)
should have simplification in their objectives and be held responsible: they have to build the vision
and roadmap and make sure it is executed through their portfolio of projects and maintenance work.
They can be assisted by domain architects

2.6.2 Project Governance

Projects that are concerned with simplification (directly or indirectly through the “opportunistic” execution)
should share their simplification strategy with their business users and ask for commitment.

Prefer a formal decision: “no immediate return” means “risk of changing mind”.

Steering committees, even for business projects, should keep this topic on the agenda to make sure it
does not disappear behind day-to-day priorities (especially with the Opportunistic Execution).

Define project phasing:

 Decide to implement read-only queries or services first because they do not destabilize the System

 Then define in which order the Blocks will be simplified: prefer input Blocks before output Blocks

 If two blocks are tied, start with the Block that is called less

But business priorities may override these rules. By delivering business value earlier, one improves
the ROI and cash flow of the project, gets user feedback and acceptance, gives visibility on the
control of the project and builds confidence with the business.

Even though the final cost and time needed to complete the simplification project will be higher, CEISAR
advises to have a phased approach with frequent releases, intermediate business benefits and
landing points where a stop-and-go is sustainable.

A rule of thumb is that each phase should last less than a year and cost less than 10 m.y if possible.

Define Planning and Budgets and isolate transparently the part (with benefits!) which is devoted to
simplification. Share it with users, so that they buy into the project, understand its goals and see their
business benefits.

03/10/2007 23/49

3 How to implement?
In this chapter, we will start diving into more technical details as we describe the actual implementation
process to deliver simplification. It is targeted towards more technical people, like architects and project
managers.

To make it simple, we modelled the information system as a pair of Blocks that use each other in any
possible way (A uses B services and outputs, B uses A services and outputs).

What is shown on this pair of blocks can serve as a model and be extended to any combination of
blocks.

3.1 Isolate Scope
If A and B are not cleanly interfaced, which means A and B access each other’s data and programs
without service interfaces (Figure 14), it is advised to do some preparation first to uncouple A from B,
before they can be replaced or transformed separately.

Sometimes, scope isolation is more easily done in parallel to the transformation or replacement work.
However, principles presented in this chapter remain.

In this chapter, we transform Block A and look at avoiding scope propagation to B (which is outside of
the initial scope). Consequently, we look at minimal reengineering of B.

Block Core

Data

Input

A and B are coupled and poorly interfaced

Output

Not

Interfaced

Code

Block Core

Data

Input

Output

Not

Interfaced

Code

BLOCK BBLOCK A

- A and B are poorly interfaced

- A and B access directly each other’s data

- A and B access directly each other’s programs or code

Figure 14: Coupled blocks

Step 1 consists in adding interfaces to B (Figure 15). This minimal action will allow to have the new
Block A access B only through proper interfaces and consequently avoid being tied to it again.

03/10/2007 24/49

Block Core

Data

Input

Step 1: Adding interfaces to B

Output

Not

Interfaced

Code

Block Core

Data

Input

Output

Not

Interfaced

Code

BLOCK BBLOCK A

- B must be extended to provide interfaces to its data and software services so that future or renewed block are not tied to it

- Since B is outside of scope, it is minimally reengineered: internal code does not use these interfaces

Data

Service

In
te

rfa
c

e

Software

Service

In
te

rfa
c

e

Figure 15: Adding interfaces to B to avoid future coupling

Since we look at minimal reengineering of B, B’s new interface will likely be an additional wrapper’s
code that will directly access B’s data and encapsulate B’s existing programs or transactions, without
further impact into B’s core code (in particular, B will not be transformed to use this new Service layer).

In some cases, in particular if B’s data is unstructured, organized as silos, based on an obsolete
database technology (hierarchical) or needs transformation, one will replicate B’s data (through
replication techniques ; see Chapter 4.4) to a clean and modern target database and will build B’s new
Service layer onto this target database.

Step 2 consists in transforming or replacing A with minimal impact on B (Figure 16).

03/10/2007 25/49

Block Core

Old data

New Input

Step 2: Renewing A with minimal impact on B

New Output

Not

Interfaced

Code

Preparation

Execution

Block Core

Data

Input

Output

Not

Interfaced

Code

BLOCK BBLOCK A

- A is replaced but provides legacy interfaces for input/output and data

- B is modified just to use the new business services if necessary (maintaining A’s software services through unchanged legacy

programs is unadvised)

- A provides legacy data to avoid B reengineering

Data

Service

In
te

rfa
c

e

Software

Service

In
te

rfa
c

e

Old Input

Data

Service

In
te

rfa
c

e

New data
Business

Service

In
te

rfa
c

e

Old Output

limited

Figure 16: Renewing A with minimal impact on B

If we look at minimal transformation of B, the less impacting solution is that A maintains legacy
inputs/outputs and maintains the legacy database (through data replication or A’s data access layer).

On the other hand, CEISAR does not advise to give access to A’s software services through
legacy programs or code. Legacy programs or code are too specific to A’s legacy technology or code
structure and providing compatibility would put too much constraint on its architecture. Consequently, B
will have to be transformed to use A’s new software services.

If B’s access to A’s code are too numerous or too complex, then A and B have to be transformed
or replaced together.

We are now in a situation where A is uncoupled from B and scope propagation has been limited.
However, since we looked at minimal reengineering of B, B remains coupled to A through the direct
access to the legacy database. In some cases, it can be worthwhile to go one step further.

Step 3 consists in modifying B so that it accesses A’s data only through A’s interfaces (Figure 17).
This additional step reduces the coupling of B using A. It removes the constraints that A has to maintain
a legacy database. On the other hand, it should be done only if B has limited and well know access
to A’s data. Otherwise, it becomes a full transformation, which means that B has actually been added
to the scope.

03/10/2007 26/49

Block Core

Old data

New Input

Step 3: Reducing B’s coupling to A

New Output

Not

Interfaced

Code

Preparation

Execution

Block Core

Data

Input

Output

Not

Interfaced

Code

BLOCK BBLOCK A

- B is modified to access A’s data through an interface

- All relations between A and B (A using B or B using A) are now done through inputs/outputs or interfaces

Data

Service

In
te

rfa
c

e

Software

Service

In
te

rfa
c

e

Old Input

Data

Service

In
te

rfa
c

e

New data
Business

Service

In
te

rfa
c

e

Old Output

limited

Figure 17: Reducing the coupling of B using A

3.2 Apply Transformation Strategy
The Transformation Strategy consists in preserving some parts of the old System (code and data) which
are considered valuable, but to progressively modify it to fight obsolescence or to improve agility. In
general the objectives are to (by order of ambition):

 Clean-it up and structure it better (cleanse data and code, share controls, etc.)
 Make the user interface web-compliant

 Re-organize it into separate and properly architectured tiers (UI Logic, Process Logic, Business
Logic, Data Access, Data) which improve agility and favor reuse (See Chapter 2.4).

 Isolate reusable data access and business functions and expose them as Services to external
applications

 Slim down the old System to the sole reusable Functions (and extract Process logic in external
applications)

Figure 18 describes the different steps of the Transformation Strategy.

03/10/2007 27/49

Transformation strategy

Find Data Access in

old Blocks

Define New Entity Model

and New Data Services

Transform Code to use

New Data Services

Transform Inputs, Outputs

and delete old code

When many “holes”

possible Replacement

Describe Old IT System

Implement

new Software Services

with old or new code

Transform Code to use

New Software Services

Act on Data Access

Act on Presentation Logic Act on Business Logic

Figure 18: Applying Transformation Strategy

In this chapter, we transform Block A only (and minimally Block B to adapt to A’s changes). If in the
scope, Block B transformation is symmetric and can be conducted in parallel or in sequence.

03/10/2007 28/49

Block Core

Data

Input

Describe old IT system which must be simplified

Output

Not

Interfaced

Code

Block Core

Data

Input

Output

Not

Interfaced

Code

BLOCK BBLOCK A

Most of the time, old legacy systems:

1- directly access their own data

2- more dangerous: access other system’s data

1
1

2

Problem is that data is not really owned by a Block

as any other Block may directly update it

Figure 19: Description of the old system

Start by creating Data Access Services and transforming the code to access data only through these
Services (Figure 20).

 Volume of data access code is often 50% of total code: huge investment

 For performance purpose, in some old Blocks, a record includes data from different Business
Entities: a single data request must then be decomposed into several data Services and be
optimized

 Code analysis tools can help find-out where data is used and accessed within programs (See
Chapter 4.8)

03/10/2007 29/49

Block Core

Input

Transform old code to use new data services

Output

Block Core

Input

Output BLOCK BBLOCK A

1 - Create Data Access Services with proper interfaces

2 - Transform Blocks to use Data Access Services (allows to modify the database without impact)

3 - Migrate old data to new data

Data

Service

In
te

rfa
c

e

New

data

Old

data

1

3

DataNot

Interfaced

Code

Not Interfaced

Code

2

Data

Service

In
te

rfa
c

e
1

2

Figure 20: Creating and using Data Access Services

“New Data” may include many different changes:

 New Business Entities
 New Identifiers
 Include Versioning
 New DBMS (like going from a classical File System or hierarchical database to a relational database)
 Less databases
 More Attributes by Class
 Replication mechanisms with subscription Services if duplicated data

Then isolate the reusable Business Logic and organize it as interfaced Software Services. Modify
inputs/outputs to isolate presentation an navigation logic. Transform the old System to use them
(Figure 21):

 Create new Services and delete equivalent code
Even if you are just wrapping the legacy with new technology or exposing services, you need to
understand it. We have witnessed projects that have tried to wrap and reuse legacy functions as black
boxes because they knew they had value but could not understand them anymore. These projects fail
miserably because they end up facing unexpected behaviours of the System that they cannot explain.

 Call Public Services

 Change Input
 Identify input records
 Isolate input code from core application code
 Change input functions: light client, on line controls, workflow, ...

 Change outputs
 Identify output records (including flows towards new Services)
 Isolate output code
 Change output functions: light client, printings, archives, complex requests, …

 Change Block Core if necessary: the volume of code should be reduced by former actions

03/10/2007 30/49

Block Core

Extract reusable business logic and transform it into
Software Services

Software

Service

In
te

rfa
c

e

Block Core

Input

Output BLOCK BBLOCK A

1 - Isolate Business Logic from rest of code

2 - Interface reusable Business Logic as Software Services

3 - Isolate input treatment into Preparation/Execution modules

4 - Provide new Inputs/Outputs

Data

Service

In
te

rfa
c

e

New

data

1

2

New input Old input

Preparation

Execution

Not

Interfaced

Code

New output Old output

DataNot

Interfaced

Code

3

4

4

Data

Service

In
te

rfa
c

e

Figure 21: Extract reusable business logic and transform it into Software Services

Once you have reached this stage, you can even slim the old System down even further if it is to be
used only as a data and service provider (with process logic in external applications or execution
engines).

3.3 Apply Replacement Strategy
The straight replacement of a whole legacy is very rare because it is often unmanageable or too risky.
However, the replacement of a big block in one piece, instead of small block by small block, is
sometimes necessary (See Chapter 2.5.2).

In this chapter, we will describe the replacement process, i.e. the different steps that should be
followed during a replacement strategy (Chapter 3.3.1).

We will then describe two execution strategies the “Big-Bang” approach when one switches over from
one system to the other in single shot (Chapter 3.3.2), or the “Parallel Execution”1 strategy, where the
two systems (old and new) run in parallel and in sync for a while (called the transition phase), thus
mitigating the risk (Chapter 3.3.3).

3.3.1 Replacement Process

Figure 22 shows the replacement process.

1
 Sometimes people use the term “Parallel Execution” to describe the tuning phase where the new System is deployed

separately from the old System (like in Big-Bang) and users do dual inputs in the new and old System for a while, to make sure
it behaves as expected. In this white-paper, we use the term “Parallel Execution” only for solutions where the two Systems are
kept in sync automatically

03/10/2007 31/49

Replacement strategy

Define New Entity Model

and New Data Services

Define New Service

Interfaces

Replace Block A with

Ascending Compatibility

Replace Block B

Replacement

complete

Describe Old IT System

Modify Block B to use

New Interfaces

Upgrade Block A to

Remove Legacy Constraints

Figure 22: Replacement strategy

We start with the assumption that preparation work (See chapter 3.1) led to two Blocks that are
cleanly interfaced: A and B use each other only through input/output or Software or Data Services
(Figure 23).

03/10/2007 32/49

Block Core

Input

Data

Service

In
te

rfa
c

e

Block A and B are cleanly interfaced

Output

Not

Interfaced

Code

Software

Service

In
te

rfa
c

e

Block Core

Data

Input

Software

Service

In
te

rfa
c

e

Data

Service

In
te

rfa
c

e

Output

Not

Interfaced

Code

BLOCK BBLOCK A

- A uses B output and B software and data services

- B uses A output and A software and data services

Data

Figure 23: Block A and B are cleanly interfaced

The proposed approach is made of three progressive steps, each of them possibly final.

 Step 1 allows to replace Block A with no impact on Block B. It can be the final step when Block B
is outside of the scope and shouldn’t be modified.

 Step 2 allows to replace Block A with limited impact on Block B. It can be the final step when
Block B is outside of the scope but can handle some modifications. These modifications allow to
reduce final complexity compared to step 2, at the expense of additional work and some Block B
transformation.

 Step 3 is the final step when Block A and Block B are within the scope.

Table 1 summarizes which steps should be followed depending on B’s situation.

Table 1 : Replacement Process

B is out of scope B is in scope

B cannot handle any
change

B can handle some
changes

B is replaced B is transformed

Step 1 Step1
Step 2

Step 1
(Step 2)
Step 3

Step 1
Step 2
Step 3

Unless otherwise noted, CEISAR advises to follow steps 1, 2, 3 progressively as they add security.
They limit the change of each step to a single entity (Block or interface change), making it easier to spot
out potential problems.

Variants are proposed depending on the context of the simplification strategy.

Step 1 consists of replacing Block A but maintaining its legacy interfaces so that Block B can be

left unchanged (Figure 24).

03/10/2007 33/49

In this situation, Block A accepts new inputs as well as old inputs and provides old interfaces as well as
new interfaces: it offers ascending compatibility.

Block B can be left totally unchanged, which limits scope propagation.

Block Core

New input

Data

Service

In
te

rfa
c

e

Step 1: A is replaced but provides ascending compatibility

New output

Not

Interfaced

Code

Software

Service

In
te

rfa
c

e

Block Core

Data

Input

Software

Service

In
te

rfa
c

e

Data

Service

In
te

rfa
c

e

Output

Not

Interfaced

Code

BLOCK BBLOCK A

- A is replaced but provides legacy interfaces and input/output so that B can remain unchanged

- A uses B’s unchanged interfaces

Old output

In
t.

In
t.

Old input
Preparation

Execution

(+ some old)

Data

(new)

Figure 24: A is replaced but provides ascending compatibility

The legacy interfaces of block A should be considered as deprecated: new applications should not
use them and old applications are encouraged to move to the new interfaces, but this can be done at
their own rhythm, on their own budget and technical agenda.

Providing legacy interfaces puts constraints on A: for example, A might need to maintain some
legacy data to convert new data in a legacy format (Mapping a new universal ID into an old organization-
dependent ID for example), or it might need to be able to do automated transformations when
constraints have been released on new data (like Windows transforms long file names into DOS
compatible 8.3 file names).

Since these limitations are expected to disappear, the code that maps old interfaces to new
interfaces or old data to new data should be cleanly isolated so that it can be removed when the old
interfaces are not used anymore.

Sometimes, it is even possible to isolate the mapping code within the middleware: connectors or
transformation engines within the EAI or the ESB handle the transformation job between the new data or
service contract offered by A and the old data or service contract expected by B (See Chapter 4.8).

Step 1 is the final step when Block B is outside of the scope and should not handle changes.

A variant of Step 1 can be used when B is in the scope. It consists in adding B’s new interfaces (with
light implementation) to Block B before replacing Block A. This variant can be used when B is
transformed rather than replaced. It has the advantage of delivering directly a version of Block A which
will not need to be adapted to B’s future interfaces.

03/10/2007 34/49

Even when B is eventually replaced, it can make sense to go through this transformation if new interfaces
are much more convenient to call from A.

CEISAR advises to use this variant when A and B are simplified in the same phase and one has
clear ideas about B’s future interfaces.

In some cases (especially when a software package is used for replacement), it is more complicated to
provide legacy interfaces that to adapt peripheral blocks to the new interfaces. In this case, step 1 is
ignored and one goes directly to step 2. However, doing that is more risky as the scope of changes is
wider (all peripheral systems have to be adapted beforehand) and defects are harder to isolate. As a
consequence, skipping step 1 should be considered very cautiously.

Step 2 consists in modifying Block B so that it uses Block A’s new interfaces rather than the

deprecated interfaces (Figure 25).

Block Core

Data

(new)

Data

Service

In
te

rfa
c

e

Step 2: B is transformed to use A new interfaces

Not

Interfaced

Code

Software

Service

In
te

rfa
c

e
Block Core

Data

Input

Software

Service

In
te

rfa
c

e

Data

Service

In
te

rfa
c

e

Output

Not

Interfaced

Code

Preparation

Execution

BLOCK BBLOCK A

- B is adapted to the new A interfaces rather than relying on A providing the legacy interfaces

New output Old output

New input Old input
Preparation

Execution

Figure 25: Block B is transformed to use A new interfaces

Step 2 is a better final point than Step 1 as the situation is simplified: Block A is fully renewed with
no trace of legacy constraints or legacy code. Mapping code between old and new interfaces, old and
new input/output and old and new data can be removed. Block A is slimmed down and more
coherent.

The disadvantage of Step 2 compared to Step 1 is that it requires some transformation of Block B,
which is not always possible.

Block B transformation should remain limited if B is outside of the scope or to be replaced. If this
is not the case, then CEISAR advises to stop at Step 1 if Block B is outside of the scope, or to go directly
to Step 3 if Block B is to be replaced.

Step 3 consists in replacing or transforming Block B (Figure 26). Block B now presents the new

interfaces and Block A is modified to use these new interfaces, if not done already (Step 1 variant).

03/10/2007 35/49

Block Core

Data

(new)

Data

Service

In
te

rfa
c

e

Step 3: B is replaced or transformed. A aligned to B

Not

Interfaced

Code

Software

Service

In
te

rfa
c

e

Block Core

Data

(new)

Input

Software

Service

In
te

rfa
c

e

Data

Service

In
te

rfa
c

e

Output

Not

Interfaced

Code

Preparation

Execution

BLOCK BBLOCK A

- B is transformed or replaced

- A is aligned to use B’s interfaces if not done already

Output

Input
Preparation

Execution

Figure 26: Block A and B have been renewed

3.3.2 Big Bang Approach

Now that we have seen the Replacement process, let’s examine execution strategies.

In the Big Bang approach, a Block is replaced totally and in a single shot: on a given date, users switch
to the new System and the old one is shut-down simultaneously (or at least closed: it might still be
running without connections and treatments for users to consult dead data).

Although most companies say that do not want to go Big-Bang, most end-up doing it because it is the
simplest replacement strategy and because it is often the only solution when a block is replaced by a
monolithic package.

Functional and Architecture Constraints

As the replacement of the old block is total and one-shot, the Big-Bang strategy does not impose any
functional constraints on the new System, except sometimes when legacy interfaces with peripheral
blocks have to be maintained.

The Big-Bang strategy does not impose any architectural constraints on the new block either (that is
why it is often the preferred strategy, especially with packages). Again, limited architecture constraints
can be found on interfaces if legacy interfaces must be maintained by the new Block.

Old System Prerequisite

A key advantage of this solution is that it does not require any transformation of the old System that
will be replaced (except to avoid scope propagation; see Chapter 3.1), and little knowledge of its
technical issues. For this reason, it is an interesting solution when technical knowledge has been lost or
when any modification would be dangerous.

03/10/2007 36/49

On the other hand, a very good and detailed understanding of the functions of the old System and
of its interfaces is required as the new system will replace the old one in one shot and with no way to
go back.

Data and Interface Migration

With this solution, data migration needs only to be one way (from the old System to the new) and can
be a single one-shot operation. As a consequence, the new data does not need to maintain legacy
properties (a legacy ID for example in addition to the new ID) or respect legacy constraints (e.g. a
limitation on a field size or malformed integrity constraint). This is true however only if the new System
does not need to provide legacy interfaces.

Being one-shot also gives a lot of flexibility in the execution of the data migration. It does not need to be
perfectly automated: the 5% of cases that are difficult or impossible to handle automatically can be just
logged and resolved manually during the data cleansing of the migration phase.

In some cases (packages in particular) the replacement solution cannot implement legacy
interfaces. In this case, all peripheral systems must be modified to adapt to the new System and
changes must go live at the same time the new System goes into production. This increases the risk,
adds up to the upfront cost of this strategy and mitigates its speed advantage. Consequently,
CEISAR does not advise to use this strategy when the renewed Block is used by many peripheral
systems while legacy interfaces cannot be supported.

Execution and Deployment

The Big Bang approach can be fast (little engineering work) but requires a lot of upfront investment
before the first delivery (detailed functional analysis, interfaces migration) and, as it name implies, does
not leave room for much phasing.

Consequently, because of its lack of progressiveness, it requires great care in the specification and
testing phases (in particular in pre-production environment).

Often a pilot phase can be organized around a subset of the Enterprise data or organization: for
example, operations of organization X will switch to the new System while operations of the rest of the
organization remain in the older System for a while. One must of course find data or organization
subsets that are mostly independent (as consistency for shared information will have to be maintained by
hand in the two Systems).

For critical Systems, some companies will start with a dual execution during the pilot phase:
users will enter dual inputs in the old and new System (running independently) for a while until they are
sure that the new System is ok. As it is very labour intensive, this practice must be very limited in
time however.

3.3.3 Parallel Execution

In the parallel execution approach, there is a transition phase where two instances of the same Block
(the old one and the new one) run in parallel an in sync. This implies a more complex migration path with
transition code to synchronize both Systems, but it reduces the risk and allows more progressiveness in
the phasing and change management.

Functional and Architecture Constraints

In the Big Bang approach, functional constraints only arise from possible support for legacy
interfaces. Parallel Execution works exactly the same way except that it introduces one additional
interface with the old System being replaced during the transition phase.

The Parallel Execution of the new and old System imposes some architecture constraints to the
new System. In particular, it is important that the new System uses internally a data & service access
layer which allows to update the old System as well as the new System during the transition phase.

Figure 27 shows the principle architecture of the Parallel Execution. The interface between the old and
new System is critical because it must insure that both Systems remain in sync without any

03/10/2007 37/49

discrepancies. It is complex because it does two-way transformation: from the old System to the new
one and vice versa and implies data replication (See Chapter 4.6).

Old SystemLegacy

Database

Target

Database

Business

Processes

Business

Entities

Service Layer

Service Layer

XML

Notification

Transition

Proxy

Business

Processes

Migration

Proxy

Peripheral

System

Peripheral System

Transition

Data comparison

Migrated to

target interface

NEW SYSTEM

OLD SYSTEM

Figure 27: Architecture of the parallel execution

Since parallel execution is just a transition phase, it is important to isolate all legacy constraints and
legacy migration code, preferably outside of the new system and in the middleware (migration proxies,
ESB, etc.) sitting between the old and the new System.

Business rules will inevitably be duplicated since the new System’s implementation must replace the old
one. However, Parallel Execution can help testing the new rules: before a new rule is activated and goes
live in the new System, it can be silently executed in the new System with live production data but without
updating the master data (doing local updates in the new System for testing purposes). Automated daily
batch can compare the new local results with legacy data and log-out all differences for debugging
analysis. Once the new rules are validated, they are activated: they update the master System and the
new data repository can be used by peripheral Systems.

Old System Prerequisite

The prerequisites on the old System are that it provides services (see Chapter 4.1), including
updates and notifications (if the old System is real-time). Otherwise, little or no modification is
necessary.

Compared to the Big-Bang approach, Parallel Execution allows more phasing and makes it easier to
progressively (re-)understand the old System. Also, it allows to mix and reuse existing functions
during the transition phase (not unlike the Transformation strategy) through direct user access,
webization, service calls, etc.

03/10/2007 38/49

Data and Interface Migration

In the Parallel Execution scheme, data migration is a complex issue. It needs to be done in real-time
(usually) and, during the transition phase, the transformed data must offer a compatibility path to the
old System, as it will be used to update it from the new System.

Since the old System is still running for a while during the transition phase, one does not have to tackle
the issue of the interfaces with the peripheral systems upfront. This is convenient when the replaced
block is interfaced to many peripheral Systems: it is easier to handle the single interface with the System
being replaced than to provide legacy interfaces for all the peripheral Systems or ask them to adapt.

Of course, one will eventually have to address these interface migrations but the parallel execution phase
will give time for that and testing will be easier because it can be done against a real running System.
Also, as time goes, it is likely that some peripheral Systems be replaced by added Functions of the new
System (such as a state-of-the-art reporting function replacing predefined peripheral batch reports),
making migration unnecessary in the end.

And more importantly, postponing this work can have a very positive impact on the ROI.

Execution and Deployment

The main advantage of the Parallel Execution strategy is to reduce the operational risk: since the old
System is mostly unchanged, and since the new and old Systems run in parallel and in sync, the old
System can be trusted and used as a fallback any time during the transition phase, without any data
or work loss. This is a key argument for critical systems handling very operational activities (such
as the systems that handle day-of-ops aircraft and crew control of a major airline).

The other advantage is in the execution. Since the new System comes in addition to the old one during
the transition phase, the new System does not need to be complete when it goes live: it can be phased
and delivered progressively, yielding business benefits earlier and bringing good visibility to the
project.

To summarize, Figure 28 compares the Big-Bang approach with the Parallel Execution approach.

03/10/2007 39/49

Big-Bang vs Parallel Execution

Big Bang
One-shot replacement of old System

Parallel Execution
New and old Systems run in sync during

transition phase

New System is a package System handles critical operation

System doesn’t have too many interfaces

Peripherals can be converted

System is interfaced with many

peripherals that are slow to convert

Functional understanding of old System is

good

Functional understanding of old System is

poor

Simple (but cutover must be handled with care) Complex (two-way data conversion between old

and new System)

Fast (but lot of upfront investment) Slow

Progressive with early business benefits

Risky: no fallback Safe: old System can be used as a

fallback anytime without loss of data

Change management is brutal Change management is progressive

Old System must have services including

event notifications (or data replication)

A
d

v
is

e
d

 W
h

e
n

P
ro

p
e
rt

ie
s

Figure 28: Big-bang vs Parallel Execution

03/10/2007 40/49

4 Questions

4.1 Extension of an Existing System?
The easiest way to offer new Services like web applications is to build extensions connected to the old
System (Figure 29).

Extension

• Clean Extensions allow to stop
increasing complexity.

• Ex: Web applications

– What is specific: Preparation and
Output

– What is reused: Execution, Data
Services, and Software Services

Block Core

Data

Input

Software

Service

In
te

rfa
c
e

Data

Service

In
te

rfa
c
e

Output

Preparation

Execution

U
s

e
r In

te
rfa

c
e
 B

BLOCK B

U
s

e
r In

te
rfa

c
e
 A

Figure 29: Extending an old system

Allowing extensions to the old System does not simplify it per se, but it allows to stop investing in it with
its possibly outdated technology/competency, thus reducing its proportional share in the information
system. As such, it is already a first step towards simplification.

Also, applying the extension strategy and adding Services to the old System is often a prerequisite and
the first steps of the Replacement and Transformation strategies.

If the old System cannot support Services (ex: old packages), you must replicate its data (See chapter
4.6) and build Services on top of the replica or switch to a Replacement Strategy.

A common mistake is to define Services dedicated to the “extension system” that need them,
without further thought on the definition of the Business Entities of the domain, on future reuse, or on the
presentation of the services. Although it can sometimes be an efficient strategy (limited tactical
extension, blitz migration), in most cases it will bring more complexity to the system. Indeed, it
introduces additional interfaces that must be maintained and additional cross dependencies between the
different pieces of the information system that will make it harder to simplify or migrate it later.

The ideal situation is to define Services on top of the old System with the same model, design and
standards that one would have used for Services offered by the new architecture (See chapter 2.4). By
doing this, one introduces a steady Service layer which reduces the need for custom one-to-one

03/10/2007 41/49

interfaces between systems and which can later act as a switchboard to move away from the old
System.

The main asset of the old System is usually the data. Consequently, data access services (CRUD) are a
good first step to extend the old System. They are usually the easiest to define both functionally and
technically. Yet, some care must be taken in their definition, to move away as much as possible from raw
data to a proper Business Entity model.

Ideally, the standards of the new IT architecture should be respected (Web Services, etc.). They should
preferably be built on industry standard (SOAP, etc.). Often, they will be built on technical layers (XML,
HTTP) which are ubiquitous and can easily be implemented on most platforms with most programming
languages. In any case, the key effort on the presentation of the services should be on the payload
which contains all the business and functional value of the message. The payload should preferably be
defined with XML. XML is ubiquitous and provides good interoperability (since it is text base). And
above all, it is extensible and allows content evolution without disturbing existing systems (if
properly managed), which is a good architecture property to limit systems coupling. In addition, XML is
the supported standard of many tools that help introducing Services in an existing system (See Chapter
4.8), and can be understood by many off-the-shelf packages that you might want to hook-up to these
Services.

The way to develop the Services will depend heavily on the platform (tools and middleware offering
available), on internal skills available, and on the risks associated with modifying the old System (Table
2).

One should also distinguish between three main types of Services: read-only queries initiated from the
extensions, updates initiated from the extensions and asynchronous event notifications coming from the
old System to the extensions.

Table 2: Adding services to a legacy

 Legacy Modification Possible Legacy Modification Impossible

Queries Custom development Screen scrapping, EAI/SOA/ESB with ad-hoc
(screens, transactions, DB) connectors,
Replication + query on replica

Updates Custom development Screen scrapping, EAI/SOA/ESB with ad-hoc
(screens, transactions, DB) connectors

Notifications Custom development, DB triggers Websphere Information Integration, Data
mirror, Teal-time ETLs, DB triggers

Read-only queries are the easiest to implement because data can be exposed from various sources:
from a transaction, from a program, or from custom access to the database. Many tools can help build
such queries (See Chapter 4.8) and custom development of read-only queries is usually not too difficult
and very unlikely to destabilize the System.

Update queries are trickier to implement because they have to go through a control point (Input Block
preferably) which insures the integrity of the update and triggers all consequent modifications
(consequent computations, updates and notifications). This single point of update usually exists in the
old System but not always.

Unlike read-only services, respecting this single point of update excludes almost all solutions based on
data replication.

Yet, the most complicated Services to implement are the asynchronous notifications (Outputs Blocks)
because they usually have to trap and handle events in multiple parts of the old System. Documentation
and knowledge is often lacking, making it difficult to trap all the events in the legacy code. Also, adding
notifications can destabilize the old System (impact on performance, reliability, etc.).

For these reasons, if notifications do not pre-exist, a non intrusive approach supported by specialized
tools, such as database triggers, database log monitoring, etc. is advised (See Chapters 4.6 and 4.8).

03/10/2007 42/49

4.2 What if Different Entity Model?

What if Entity Model is different ?

• If some types have changed: Conversion Services needed

• If some attributes have been added to new Entity: depending on the
transformation strategy, may require to add a new Data Base with new
attributes only

• If a new Entity groups several old entities: easy problem

– Example: old « Region » and « Branch » replaced by « Organization Unit »

• If an old Entity is divided into several new Entities: a cache can be useful to
optimize performance

– Example: old « Person-Address » replaced by « Person » and « Address »

– Example: old “Contract” replaced by “Subscriber” and “Contract”

• If the Entities are not the same, it becomes more difficult: to be solved case by
case

– Example: “branch-client” replaced by “global-client”

• Which id ?

• Requires software adaptations

03/10/2007 43/49

4.3 What if Output Blocks First?

What if Output Blocks first ?

• If you are free to deliver Blocks in the order you want, start with Input Blocks
which will deliver more complete data, and go on in the data flow order.

Example:

• But if a business constraint imposes to deliver Output Blocks first, then :

– New data will not be available in these new Blocks: they will require to be adapted
after upstream Blocks will deliver the new data.

– New Blocks must be more permissive if data is lacking

Manage Organization Manage ProductsManage Actors

Manage Sales and

Contracts

Manage Services

Manage Finance

and Reporting

03/10/2007 44/49

4.4 What if Block Structure is different?

What if new Block Structure is different ?

Old System New System

Decompose into smaller Blocks

which are subsets of each decomposition.

Allows to replace sub-Block by sub-Block

4.5 What About Conversion?
Conversion consists in translating a system from one technology (e.g. COBOL/CICS) to another (e.g.
Java/J2EE).

Conversion is a Replacement Strategy that can be used if a Block operates under an obsolete
technology and is well structured (otherwise conversion will fail).

Conversion is not used very often because it can hardly be automated (converting a COBOL program to
Java will lead to a Java program that looks like COBOL and which will be hard to maintain), and its
benefits are limited (new System will have the same limitations of the old one, except for the
programming language).

Some software houses offer conversion services where Systems are entirely re-written. This is a labor
intensive process but the converted Systems respect the best practices of the target environment (i.e.
object oriented concepts for a Java target) and are easier to maintain.

4.6 What About Data Replication?
Although every architecture book discourages the use of Data Replication, it is a technique which must
be known as it is often used in simplification projects. In particular, it is used in any Transformation or
Replacement project which requires (at least temporarily) parallel execution of the old and new System
with access on the same data.

Simple Data Replication without model translations is well supported by databases and tools. It does not
present any challenge, but is used (in our case) only for re-hosting.

03/10/2007 45/49

When we look at legacy simplification, we most likely want to do model transformation when we
replicate data from the old System to the new System. There are several ways to do that:

 If the old System always writes its data through a data access layer, then it is possible to modify the
data access layer to write in the old database as well as in the new database. But that implies that
modifying the old System is ok (stability and performance are at risk) and that it has enough
information to write data in the new form.

 A popular alternative, especially if the old System does not always use a data-access layer, is to use
database triggers. Database triggers are less intrusive because they do not imply code
modification, but they can affect performances. For this reason, and for improved flexibility, it is
advised that the triggers only track database modifications and send out messages. These
messages are then handled by the replicated system which does model translation (possibly using
additional data only available on the new System) and writes down the replicated data in the new
System.

 A variant of database triggers is the use of specialized data-integration tools (See Chapter 4.8)
that produce event messages (usually XML-based and sent on a message queue) based on
database changes. These tools are non intrusive and do not affect performances because they run
outside of the database (usually using log scrapping).

 If the data do not need to be replicated in real-time, then scripts or preferably ETL tools offer all the
flexibility to do data replication with model transformation properly. Real-time ETL tools are
arriving on the marketplace and can also prove to be a good solution, even for real-time updates.

In any case, access to replicated data should only be read only. Synchronizing two data repository that
can be updated separately proves to be very complicated (even though techniques such as tokens
exist). It is consequently advised to respect a master-slave mechanism where the data-access layer of
the new system forwards updates to the old System and awaits acknowledgement before committing
them on the replica. It is only when updates from the old System are phased-out that the new data can
become the master.

Note that with off-the-shelf packages, this rule can sometimes be hard to obey (the package will likely
commit changes in its own database before receiving an acknowledgement from the external System).
One must then implement data reconciliation techniques that are more complicated and not as safe.

4.7 Parameters and Rule Engines?
One strategy may consist in focusing first on what changes often: the idea is not to progressively replace
the old System; it is just to extract the part which requires reactivity. Let’s call it “flexible part”. This
flexible part can include data and/or rules.

To give examples:

 to increase “time to market”, the company must be able to quickly modify existing products or create
new products

 to modify commission system, the company must be able to quickly modify commission parameters
or rules

Modifying existing products means modifying the flexible part composed of parameters or rules which
define Pricing or Eligibility rules.

When the old Systems are complex, it is very difficult to directly update them because parameters and
rules are spread out among many different tables and modules.

Creating new products follows the same principles: the flexible part must allow assembling new
products by reusing product parts. Then new parameters and rules are embedded in product definition.

When the Flexible Part is data driven, one efficient way is the following non intrusive approach:

 Define the Business model and the class model

 Import data from the old System

 Offer visibility on products

 Offer a tool to modify or create products

03/10/2007 46/49

 Export data to old Systems

If the part is rule driven, it is more difficult to do because representation of rules depends on the
architectures of the old System and the new System. If architecture are different, it is more efficient to
replace flexible rules by a rule engine (see White Paper on Rule Engines).

4.8 Which Middleware and Tools?
Complexity Analysis

Many tools can provide complexity metrics (cyclomatic complexity, modules coupling, etc.) through
static code analysis: some are software packages (Cast, Relativity, McCabe…), others are consultants’
tools (Qualixo, Isoscope…), others are open-source tools (Eclipse Metrics, CheckStyle…).

They differ by the number of languages they support (Cobol, C, C++, Java, ABAP, etc.) and how they
support system-wide technologies (giving a global view of a HTML-JSP/J2EE/CICS/COBOL system for
example) or architecture metrics (tier access violations for example).

Most of these tools can provide system cartography with links and coupling between modules, and can
trace data flow (from database columns to programs’ usage). They usually generate a HTML map of the
System which allows simple navigation. This gives very interesting insight into the System when one
wants to find-out dependencies, analyse impact or wants to regain functional knowledge.

Some of these tools (Relativity, Asetechs…) offer remediation workbenches which can do refactoring
(remove dead code, reorganize flow controls, normalize code…), slice code (to isolate data access in
separate programs for example), and provide base documentation (UML artefacts) which can then be
enriched by an expert.

Data Replication / Data Integration

Many ETL vendors (Informatica, Cognos, Business Objects/Acta…) provide very robust tools which can
extract data from different referentials (files, hierarchical or relational databases, SAP, etc.), transform
them (merges, cleansing, transformation) and load the results into the target replicated database. These
tools handle large volumes of data (they have been typically used for datawarehouses) and usually run
as batches. They can be used for data replication but only when real-time updates are not required.

Some companies have recently moved towards real-time ETL (DataMirror, IBM Information Server…).
Their products are non intrusive: they can monitor database changes (using various techniques such as
log scrapping), extract the changed data, transform them and update a target database. Alternatively,
they can generate XML messages, transform them and send them on a queue based on configurable
rules.

These tools can be used for data replication as well as data integration. They come close to the EAI
in terms of message generation, transformation and routing, but they do not invoke services or
transactions (except for database updates).

Business Integration

Webization tools permit to expose legacy screens (usually mainframe) in a HTML format. This allows
UI-level integration within modern applications (portal or other Intranet tools).

EAI (Enterprise Application Integration) tools offer connectors to expose legacy data (databases,
mainframe transactions, SAP, etc.) and events, and send them to an engine which transforms and
routes them to other applications, thus providing process and business integration.

SOA differs from the EAI concepts by focusing on Services rather than data, and by leveraging open
standards (WS-* web services standards, SOAP, etc.). Generic Business Process orchestration engine
allow to implement the process orchestration, i.e. invocation of web services following process logic, with
an open high-level (possibly graphical) language (BPEL).

ESB are a mix of open-standard based EAI and SOA, combining web services, messaging middleware,
intelligent routing and transformation. ESB provide WS-* compliant connectors to call and expose web

03/10/2007 47/49

services and offer asynchronous messaging facilities to transport data (usually under an XML format)
with configurable routing and transformation engine (we talk of EDA: Event Driver Architecture). Java-
based ESB usually comply with a standard (called JBI) which allows connectors and transformation
engines to be independent of the ESB vendor.

Major SOA/EAI/ESB vendors are IBM, Microsoft, SeeBeyond (Sun), Tibco and WebMethods (Software
AG).

03/10/2007 48/49

5 Case Studies Abstracts

5.1 Axa
AXA has defined a strong governance model for legacy simplification with the objective to incorporate
complexity decrease in all IT projects and activities.

Every IT unit must include convergence & simplification in their annual IT strategic plan. This
initiative is supported by template business case and a standard approach for application selection
(aligned to business priorities).

Simplification is mostly justified by the reduction of soft costs, i.e. impact of complexity on business
efficiency, which are not easy to justify. Consequently, business must be strongly involved.

Execution is primarily opportunistic and done during functional upgrades of strategic business
applications.

AXA has started experimenting with legacy complexity analysis tools and has found them valuable.

5.2 BNP Paribas
BNPP’s main approach for simplification is Legacy Extension with an important effort to expose data
access services to external applications.

Common Business Entities have been defined with attention paid to be organization-independent.
Then, in 10 years, most applications have been modified to expose or use ~1000 basic Data Interfaces
that have been defined with IDL. Client proxies and server stubs are automatically generated in
different languages/technologies (COBOL, Java, ActiveX) thus facilitating integration.

BNPP maintains a catalog of ~2000 reusable components: Entity access but also Business
Functions (data checks, risk evaluation, etc.).

Each Business Domain (Credit, Insurance, Securities) owns its own Information System with clear data
ownership responsibilities and subscription mechanism for external systems/application.

Replacement was chosen for Payroll (HR Access) and Human Resources (SAP).

Transformation is considered very difficult and used only for the most complex IT systems.

5.3 Michelin
Michelin is simplifying its legacy information system by standardizing on worldwide “master
applications” for each Business Domain. This is done in parallel to streamlining the processes and
making them common in the different countries.

For that matter, Michelin has set-up a strong governance model where each domain’s IS is governed by
a committee whose chairman comes from the business but is involved with legacy obsolescence issues.

Michelin is currently studying its simplification approach for their order-to-invoice system. After a very
thorough examination of the legacy system (an in-house 4.5 million LOC COBOL system), including
block cartography and complexity analysis (with metrics), Michelin is leaning towards a
Transformation Strategy where Data Access and reusable “Business Engines” will be isolated
and exposed as Web Services. Process logic will be rewritten with a Business Process Execution
Engine which will offer the flexibility required by the business.

In some cases (end of vendor’s support on a technology/product), Michelin subcontracts application
rewrite. In this case, they are always done without any functional modification.

03/10/2007 49/49

5.4 Total
SAP Simplification

After the merger of Total-Fina with Elf Aquitaine, the company standardized its ERP on SAP. Because of
the number of affiliate companies and needs for IT environments (development, QA, pre-production…),
44 SAP instances were needed for small and medium companies.

In 2006, Total launched a project to simplify its SAP infrastructure and reduce its number of
templates. The project reduced IT costs by reducing the number of maintenance and operations
activities and reducing the number of servers (Servers and SAP transports have been reduced by 40%).
ROI should be met in 1.5 years, proving there can be a case for IT-based ROI when the simplification
scope is well defined.

Environments were compared and merged two by two, starting with the simplest and closest to best
practices. Each step was very short to complete (10 weeks).

Identity Directory renewal

Total is moving the identity and organization logic away from the applications into a central Identity
Directory, which will help streamline and automate processes (when someone arrives or leaves the
company) and reduce maintenance costs. This central Identity Repository will expose its shared
Business Functions through web services.

The new directory is going to replace the old one. It is deployed progressively and runs in parallel to
the old one during a transition phase. At first, it handles only new functions and supports a limited subset
of users who need these new functions. Then, usage grows in terms of implemented functions and
concerned users, until the new System can replace the old one.

Applications are migrated by clusters defined by a dependency analysis on Block cartography. For
each application, migration to the new System is big bang with extensive regression testing beforehand.

